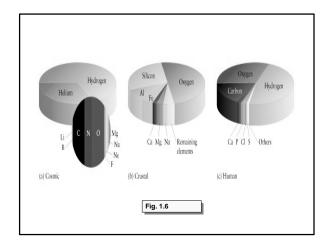
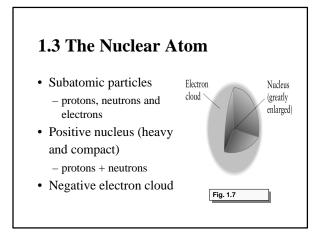
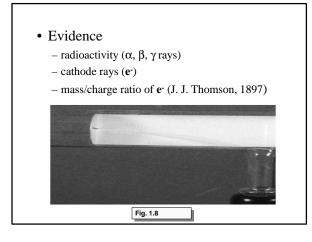


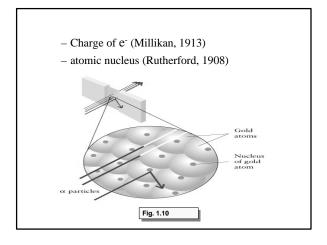
Matter

- everything that has mass an occupies space
- pure substances and mixtures
- The Elements
 - basic building blocks of matter
 - ancient Greeks earth, air, fire and water

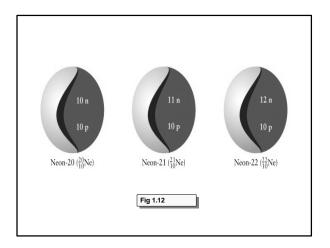

1.1 Atoms

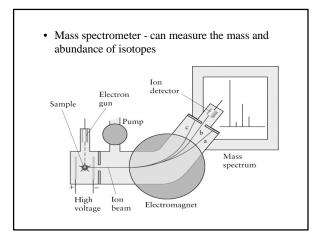

- Matter continuous or discontinuous
- Dalton's experiments – elements combine in definite proportions
 - (2g O / 3g Mg), (4g O / 6g Mg)
 - compounds have constant composition


1.2 Names of the Elements


- Chemical (atomic) symbols
 - H (hydrogen), C (carbon), O (oxygen), Ar (argon), Cl (chlorine)
 - Fe (iron, ferrum), Ag (silver, argentum), Sn (tin, stannum)
- Abundance of elements

Particle	Symbol	Charge*	Mass, g
electron	e	-1	9.109×10^{-2}
proton	р	+1	1.673×10^{-2}
neutron	n	0	1.675×10^{-2}





- Protons positively charged, ~2000 times heavier than the e^{-}
- Atomic number (Z) number of protons in the atomic nucleus
- Atoms are neutral $#e^- = #p = Z$

1.4 Isotopes

- The **#n** in the nucleus can vary for a given element
- Mass number (A) $\mathbf{A} = \#\mathbf{p} + \#\mathbf{n}$
- Isotopes
 - atoms with the same \mathbf{Z} , but different \mathbf{A}
 - belong to the same element, but have different atomic mass

Examples:

- How many **p**, **n**, and **e** are present in an atom of Plutonium-239?
- Write the atomic symbol for an isotope with 44 **n** and 32 **e**⁻?