

3.5 Net Ionic Equations

- Overall chemical equation
 AgNO₃(aq) + NaCl(aq) → AgCl(s) + NaNO₃(aq)
- Complete ionic equation
 - strong electrolytes are completely ionized in aqueous solutions [NaCl(aq) → Na⁺(aq), Cl⁻(aq)]

 $\begin{array}{l} Ag^{+}(aq) + NO_{3}^{-}(aq) + Na^{+}(aq) + CI^{-}(aq) \rightarrow \\ \rightarrow AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq) \end{array}$

- Spectator ions present on both sides of the equation (can be canceled)
 - $\begin{array}{l} Ag^{+}(aq) + NO_{3}^{-}(aq) + Na^{+}(aq) + Cl^{-}(aq) \rightarrow \\ \rightarrow AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq) \end{array}$
- Net ionic equation no spectator ions

$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

• For simplicity, we can omit (**aq**) after the symbols of all ions in aqueous solutions (assume all ions in solution as aqueous)

 $Ag^+ + Cl^- \rightarrow AgCl(s)$

Example:

• Write the net ionic equation for the precipitation of mercury(I) phosphate from mercury(I) nitrate and potassium phosphate.

mercury(I) \rightarrow Hg₂²⁺ \rightarrow Hg₂(NO₃)₂

⇒Skeletal eq:

$$\begin{aligned} Hg_{2}(NO_{3})_{2}(aq) + K_{3}PO_{4}(aq) \rightarrow \\ \rightarrow (Hg_{2})_{3}(PO_{4})_{2}(s) + KNO_{3}(aq) \end{aligned}$$

⇒Overall balanced eq: $3Hg_2(NO_3)_2(aq) + 2K_3PO_4(aq) \rightarrow$ $\rightarrow (Hg_2)_3(PO_4)_2(s) + 6KNO_3(aq)$ ⇒Complete ionic eq: $3Hg_2^{2+} + 6NO_3^{-} + 6K^+ + 2PO_4^{3-} \rightarrow$ $\rightarrow (Hg_2)_3(PO_4)_2(s) + 6K^+ + 6NO_3^{-}$ ⇒Net ionic eq: $3Hg_2^{2+} + 2PO_4^{3-} \rightarrow (Hg_2)_3(PO_4)_2(s)$

Example:

- Predict the outcome of the mixing of silver nitrate and potassium chromate solutions.
- \Rightarrow Ions present in the solution:

 $Ag^{+}, NO_{3}^{-}, K^{+}, CrO_{4}^{-2}$

⇒consider all possible combinations of ions to find if an insoluble product can form:

 Ag^+ and CrO_4^{-2-} form insoluble Ag_2CrO_4 ⇒Net ionic eq: $2Ag^+ + CrO_4^{-2-} \rightarrow Ag_2CrO_4(s)$

Reactions of Acids and Bases

- Acids sharp, sour taste
- Alkalis (bases) soapy, bitter taste
- 3.7 Acids and Bases in Solution
- Arrhenius acids release hydrogen ions (protons), **H**⁺(**aq**), in water solutions
- Formation of hydronium ions (H₃O⁺) transfer of protons from the acid to the water molecules
- The H_3O^+ ions are strongly hydrated by water molecules $\rightarrow H_9O_4^+$

Example: Hydrogen chloride dissolves in water to form hydrochloric acid solution. $HCl(g) + H_2O(I) \rightarrow H_3O^+ + CI^-$

4 Hydronium ion, H_3O^+

- Acidic hydrogen atoms in molecules

 can be released as H⁺ ions
 formulas normally begin with the acidic Hs
- \Rightarrow HCl, H₂SO₄, HCN,
- Carboxyl groups → -COOH (contain the acidic Hs in organic acids)

 $\Rightarrow Acetic acid C_2H_4O_2 \rightarrow 4 \ H \ atoms, 1 \ acidic \ H \\ Formula \ depicting \ the \ acidic \ H \rightarrow \ CH_3COOH$

 \Rightarrow Benzoic acid \rightarrow C₇H₆O₂ \rightarrow C₆H₅COOH

• Arrhenius bases - release hydroxide ions, **HO**⁻, in water solutions

Examples:

- ⇒NaOH dissolves in water and dissociates to Na⁺ and OH⁻.
- ⇒Ammonia gas, **NH**₃, dissolves in water and produces **NH**₄⁺ and **OH**⁻.

 $NH_3(g) + H_2O(l) \rightarrow NH_4^+ + OH^-$

3.8 Strong and Weak Bases

- Strong bases almost completely ionized in aqueous solutions (oxides and hydroxides of alkali and alkaline earth metals)
- $\Rightarrow KOH(s) \rightarrow K^{+} + OH^{-} \qquad (\sim 100\% \text{ ionized})$

$$\Rightarrow CaO(s) + H_2O(l) \rightarrow Ca^{2+} + 2OH^{-}$$

 $(O^{2-} + H_2O(l) \rightarrow 2OH^-)$

- Weak bases only partially ionized in aqueous solutions (ammonia, amines, ...)
- $\Rightarrow NH_{3}(aq) + H_{2}O(l) \rightarrow NH_{4}^{+} + OH^{-} \ \, (\text{~~1\% ionized})$

