

3.10 Neutralization

- Neutralization reactions
acid + base \rightarrow salt + water $_{\text {(or other products) }}$
- salt - an ionic compound with a cation from the base and an anion from the acid
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathbf{2 K O H}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l})$
Example: Predict the products of the reaction between carbonic acid and calcium hydroxide.

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

3.11 Proton Transfer

- Net ionic equations for reactions between strong acids and bases
$\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{K}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathbf{O}(\mathbf{l})$
$-\mathrm{H}^{+}$is present in the form of $\mathbf{H}_{3} \mathbf{O}^{+}$
$\Rightarrow \mathbf{H}_{\mathbf{3}} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l})$
\Rightarrow net ionic equation for all strong acid/strong base reactions (transfer of a proton from $\mathrm{H}_{3} \mathrm{O}^{+}$to OH^{-})
- Net ionic equations for reactions between weak acids and strong bases

Example:

$\mathrm{HF}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{HF}(\mathrm{aq}) \rightarrow$ weak acid (only partially ionized)
$\mathrm{HF}(\mathrm{aq})+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{Na}^{+}+\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Rightarrow \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-} \rightarrow \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
\Rightarrow transfer of a proton from HF to $\mathbf{O H}^{-}$

- Net ionic equations for reactions between

3.12 Acidic and Basic Character in the Periodic Table

- Basic oxides - react with water to form bases
- most soluble metal oxides
$\mathbf{B a O}(\mathrm{s})+\mathbf{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{B a}(\mathbf{O H})_{\mathbf{2}}(\mathrm{aq})$
- react with acids to form salts and water
$\mathbf{C a O}(\mathrm{s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathbf{C a}\left(\mathrm{NO}_{3}\right)_{2}(\mathbf{a q})+\mathbf{H}_{2} \mathrm{O}(\mathrm{l})$
- elements located in the lower left corner of the table
- Acidic oxides - react with water to form acids
- most nonmetal oxides
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
- react with bases
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- elements located in the upper right corner of the table
- Amphoteric oxides - have both acidic and basic properties
- some metalloid oxides + oxides of $\mathrm{Be}, \mathrm{Al}, \mathrm{Ga}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{Bi}$
- react with both acids and bases
- elements form a diagonal band in the table

Redox Reactions

3.14 Oxidation and reduction

- Transfer of electrons from one species to another
$\mathbf{2 N a}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N a C l}(\mathrm{s})$
$\mathrm{NaCl}(\mathrm{s})$ consists of ions:
$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{s})+2 \mathrm{Cl}^{-}(\mathrm{s})$
$\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{s}) \quad \Rightarrow$ loss of $1 \mathrm{e}^{-}$by Na
$\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{s}) \quad \Rightarrow$ gain of $2 \mathrm{e}^{-}$by Cl_{2} Result: transfer of electrons from Na to Cl_{2}
- Oxidation - loss of electrons (Na is oxidized)
- term originates from reactions of substances with oxygen
- Reduction - gain of electrons $\left(\mathrm{Cl}_{2}\right.$ is reduced) - term originates from reactions of metal oxides with $\mathrm{C}, \mathrm{CO}, \mathrm{H}_{2}$, etc. to extract (reduce) the pure metal
- Oxidation and reduction can not occur independently
- electrons gained by one species must be lost by another (e^{-}gained by Cl_{2} are lost by Na)

3.15 Oxidation Numbers

- Oxidation number ($\mathrm{Ox} \#$) is assigned to each element in a substance
- Oxidation numbers can help determine whether substances are oxidized or reduced
- oxidation - increase in Ox\#
- reduction - decrease in Ox\#
$\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{s}) \quad \Rightarrow \mathbf{O x} \#$ increases $(0 \rightarrow+1)$
$\mathbf{C l}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{s}) \quad \Rightarrow \mathbf{O x} \#$ decreases $(0 \rightarrow-1)$
- for monoatomic ions $\rightarrow \mathbf{O x} \#=$ charge of ion
- for free elements $\rightarrow \mathbf{O x \#}=\mathbf{0}$
- for $\mathbf{F} \rightarrow \mathbf{O x} \#=\mathbf{- 1}$
- for $\mathbf{O} \rightarrow \mathbf{O x} \#=\mathbf{- 2}$ (except in combination with F and in peroxides)
- for $\mathbf{H} \rightarrow \mathbf{O x \#}=+\mathbf{1}$ (in combination with nonmetals) $\rightarrow \mathbf{O x} \#=\mathbf{- 1}$ (in combination with metals)
- for halogens $\rightarrow \mathbf{O x} \#=\mathbf{- 1}$ (except in comb. with O or other halogen higher in the group)
- the sum of $\mathbf{O x} \#$ of all elements in a species equals the charge of the species

Example:

- Assign the oxidation numbers of all elements in $\mathrm{NO}_{3}{ }^{-}$and HClO_{3}.
$\mathrm{NO}_{3}{ }^{-} \quad \Rightarrow \mathrm{O}(-2)$ by rule
$3 \times(-2)+1 \times(X)=-1 \quad \Rightarrow X=+5 \quad \Rightarrow N(+5)$

$$
\begin{aligned}
\mathrm{HClO}_{3} & \Rightarrow \mathrm{O}(-2) \text { by rule } \\
& \Rightarrow \mathrm{H}(+1) \text { by rule } \\
3 \times(-2)+1 & \times(+1)+1 \times(\mathrm{X})=0 \Rightarrow \mathrm{X}=+5 \quad \Rightarrow \mathrm{Cl}(+5)
\end{aligned}
$$

