

Reaction Stoichiometry

quantitative relationships between reactants and products

4.1 Mole-to-Mole Calculations

· Stoichiometric relations in chemical equations

 $2H_2 + O_2 \rightarrow 2H_2O$ 2 mol H₂ \Leftrightarrow 1 mol O₂ 1 mol O₂ \Leftrightarrow 2 mol H₂O

Conversion method

 mole ratios (conversion factors)
 [2 mol H₂O/1 mol O₂]

(mol given)×(mole ratio)= (mol required)

Example: Determine the number of moles of water produced from **3.4 mol O**₂.

$$3.4 \operatorname{mol} O_2 \times \left(\frac{2 \operatorname{mol} H_2 O}{1 \operatorname{mol} O_2}\right) = 6.8 \operatorname{mol} H_2 O$$

• Stoichiometric conversion factors are reaction specific

Example: Calculate the amount of O₂ needed to produce 3.5 mol H₂O by combustion of methane (CH₄). ⇒balanced equation: CH₄ + 2O₂ → CO₂ + 2H₂O ⇒mole ratio (conversion factor): 2 mol O₂ ⇔ 2 mol H₂O [2 mol O₂/2 mol H₂O] 3.5 mol H₂O× $\left(\frac{2 mol O_2}{2 mol H_2O}\right) = 3.5 mol O_2$

Example:

 Calculate the mass of oxygen needed to completely burn 5.4 kg of butane (C₄H₁₀).
 ⇒balanced equation:

 $2\mathrm{C}_{4}\mathrm{H}_{10} + 13\mathrm{O}_{2} \rightarrow 8\mathrm{CO}_{2} + 10\mathrm{H}_{2}\mathrm{O}$

 \Rightarrow mole ratio (conversion factor):

13 mol $O_2 \Leftrightarrow 2 \mod C_4 H_{10}$ [13 mol $O_2/2 \mod C_4 H_{10}$]

⇒molar masses:

 $C_4H_{10} \rightarrow 58.1 \text{ g/mol}$ $O_2 \rightarrow 32.0 \text{ g/mol}$

5.4 kg C₄H₁₀ ×
$$\left(\frac{10^3 \text{ g C}_4 \text{H}_{10}}{1 \text{ kg C}_4 \text{H}_{10}}\right)$$
 × $\left(\frac{1 \text{ mol C}_4 \text{H}_{10}}{58.1 \text{ g C}_4 \text{H}_{10}}\right)$ ×
× $\left(\frac{13 \text{ mol O}_2}{2 \text{ mol C}_4 \text{H}_{10}}\right)$ × $\left(\frac{32.0 \text{ g O}_2}{1 \text{ mol O}_2}\right)$ = 1.9×10⁴ g O₂ = = 19 kg O₂
• Gravimetric analysis - uses measurements of mass to obtain the amount of analyte
– precipitation reactions
– gas formation reactions

Example:

- A sample of ore of mass 5.324 g was analyzed for Ba by dissolving the sample and then precipitating the Ba²⁺ ions with sulfuric acid. After drying, the mass of the precipitate was found to be 3.752 g. What is the mass % of Ba in the sample?
- \Rightarrow net ionic equation:

$$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4(s)$$

