

- Conversion method
- mole ratios (conversion factors)
[$2 \mathrm{~mol} \mathrm{H} \mathbf{2} \mathrm{O} / 1 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$]
$(\operatorname{mol}$ given $) \times($ mole ratio $)=(\mathbf{m o l}$ required $)$
Example: Determine the number of moles of water produced from $3.4 \mathrm{~mol} \mathrm{O}_{2}$.
$3.4 \mathrm{~mol} \mathrm{O}_{2} \times\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=6.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
- Stoichiometric conversion factors are reaction specific

Reaction Stoichiometry

- quantitative relationships between reactants and products

4.1 Mole-to-Mole Calculations

- Stoichiometric relations in chemical equations

$$
\begin{gathered}
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{~mol} \mathrm{H}
\end{gathered} \mathbf{H}_{2} \Leftrightarrow 1 \mathrm{~mol} \mathrm{O}_{2} .
$$

Example: Calculate the amount of $\mathbf{O}_{\mathbf{2}}$ needed to produce $3.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ by combustion of methane $\left(\mathbf{C H}_{4}\right)$.
\Rightarrow balanced equation:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

\Rightarrow mole ratio (conversion factor):

$$
2 \mathrm{~mol} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{~mol} \mathrm{H} \mathbf{2}
$$

$$
[2 \mathrm{~mol} \mathrm{O} 2 / 2 \mathrm{~mol} \mathrm{H} \mathbf{2} \mathbf{O}]
$$

$3.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times\left(\frac{2 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=3.5 \mathrm{~mol} \mathrm{O}_{2}$

Example:

- Calculate the mass of oxygen needed to completely burn 5.4 kg of butane $\left(\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}\right)$.
\Rightarrow balanced equation:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

\Rightarrow mole ratio (conversion factor):

$$
\left.\begin{array}{c}
13 \mathrm{~mol} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \\
{[13 \mathrm{~mol} \mathrm{O}} \\
2
\end{array} 2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}\right]
$$

\Rightarrow molar masses:

$$
\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow 58.1 \mathrm{~g} / \mathrm{mol} \quad \mathrm{O}_{2} \rightarrow 32.0 \mathrm{~g} / \mathrm{mol}
$$

$$
\begin{aligned}
& 5.4 \mathrm{~kg} \mathrm{C}_{4} \mathrm{H}_{10} \times\left(\frac{10^{3} \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}}{1 \mathrm{~kg} \mathrm{C}_{4} \mathrm{H}_{10}}\right) \times\left(\frac{1 \mathrm{molC}_{4} \mathrm{H}_{10}}{58.1 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}}\right) \times \\
& \times\left(\frac{13 \mathrm{molO}_{2}}{2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}}\right) \times\left(\frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=1.9 \times 10^{4} \mathrm{~g} \mathrm{O}_{2}= \\
& =19 \mathrm{~kg} \mathrm{O}_{2}
\end{aligned}
$$

- Gravimetric analysis - uses measurements of mass to obtain the amount of analyte
- precipitation reactions
- gas formation reactions

Example:

- A sample of ore of mass 5.324 g was analyzed for Ba by dissolving the sample and then precipitating the Ba^{2+} ions with sulfuric acid. After drying, the mass of the precipitate was found to be 3.752 g . What is the mass $\%$ of Ba in the sample? \Rightarrow net ionic equation:

$$
\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})
$$

\Rightarrow mole ratio:

$\left[1 \mathrm{~mol} \mathrm{Ba}^{2+} / 1 \mathrm{~mol} \mathrm{BaSO}_{4}\right]$
\Rightarrow molar masses:
$\mathrm{BaSO}_{4} \rightarrow 233.40 \mathrm{~g} / \mathrm{mol}$ Ba $\rightarrow \mathbf{1 3 7 . 3 4} \mathbf{g} / \mathrm{mol}$
$3.752 \mathrm{~g} \mathrm{BaSO}_{4} \times\left(\frac{1 \mathrm{molBaSO}_{4}}{233.40 \mathrm{~g} \mathrm{BaSO}_{4}}\right) \times$
$\times\left(\frac{1 \mathrm{molBa}^{2+}}{1 \mathrm{molBaSO}_{4}}\right) \times\left(\frac{137.34 \mathrm{~g} \mathrm{Ba}}{1 \mathrm{molBa}^{2+}}\right)=2.208 \mathrm{~g} \mathrm{Ba}$
\Rightarrow mass \%:

