Solutions

- homogeneous mixtures
- solvent, solute(s)
4.6 Molarity (M)
- Measure of the solute concentration

$$
M=\left(\frac{\text { amount of solute (mol) }}{\text { volume of solution (L) }}\right) \quad \text { or } \quad M=\frac{n}{V}
$$

- Units - molar (M) $\mathbf{1} \mathbf{~ m}=\mathbf{1} \mathbf{m o l} / \mathbf{L}$
- Example: Calculate the molarity of a solution prepared by dissolving 5.33 g NaOH in water using a $\mathbf{1 0 0 . 0} \mathbf{~ m L}$ volumetric flask.
\Rightarrow convert the mass to moles:

$$
5.33 \mathrm{~g} \mathrm{NaOH} \times\left(\frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.00 \mathrm{~g} \mathrm{NaOH}}\right)=0.133 \mathrm{~mol} \mathrm{NaOH}
$$

\Rightarrow convert volume to liters: $\quad \mathbf{1 0 0 . 0} \mathbf{~ m L}=\mathbf{0 . 1 0 0 0} \mathrm{L}$ \Rightarrow divide moles by solution volume:
$\frac{0.133 \mathrm{~mol} \mathrm{NaOH}}{0.1000 \mathrm{~L} \text { solution }}=1.33 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L} \rightarrow 1.33 \mathrm{M} \mathrm{NaOH}$

- Preparation of solutions with known molarity - transfer a known mass of solute in a volumetric flask
- dissolve in small amount of water

- Calculations using molarity
$M=n / V$

$$
n=M \times V
$$

$$
V=n / M
$$

Example: Calculate the volume of $\mathbf{1 . 3 3}$ м $\mathbf{N a O H}$ solution that contains $\mathbf{5 . 0 0} \mathbf{~ m o l ~ N a O H}$.
$V=\frac{n}{M}=\frac{5.00 \mathrm{~mol} \mathrm{NaOH}}{1.33 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L}}=3.76 \mathrm{~L}$
or use molarity as a conversion factor:
$5.00 \mathrm{~mol} \mathrm{NaOH} \times\left(\frac{1 \mathrm{~L}}{1.33 \mathrm{~mol} \mathrm{NaOH}}\right)=3.76 \mathrm{~L}$

- Preparation of solutions with given molarity

Example: Calculate the mass of $\mathbf{N a O H}$ needed to prepare $\mathbf{2 5 0} \mathbf{~} \mathbf{m L} \mathbf{1 . 3 3} \mathbf{~ m}$ solution.
\Rightarrow calculate the \# of moles of NaOH needed:
use $n=M \times V$ or the conversion method $0.250 \mathrm{~L} \times\left(\frac{1.33 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}}\right)=0.332 \mathrm{~mol} \mathrm{NaOH}$ \Rightarrow convert the moles of NaOH to grams:
$0.332 \mathrm{~mol} \mathrm{NaOH} \times\left(\frac{40.00 \mathrm{~g} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{NaOH}}\right)=13.3 \mathrm{~g} \mathrm{NaOH}$

4.7 Dilution

- Reducing the concentration of the solute by adding more solvent
- Stock solutions - concentrated solutions used to store reagents
- Dilution Procedure
- use a pipette to measure a small volume of the concentrated solution and transfer it to a volumetric flask
- add solvent to fill the volumetric flask to the mark

- Dilution calculations

$$
n=M \times V
$$

- dilution doesn't change the total \# of moles of solute in the solution

$$
n_{i}=n_{f} \quad M_{i} \times V_{i}=M_{f} \times V_{f}
$$

- Example: Calculate the molarity of a solution prepared by dilution of $\mathbf{5 . 0 0} \mathbf{~ m L} \mathbf{2 . 0} \mathbf{~ m ~ H C l}$ stock solution to $\mathbf{1 0 0 . 0} \mathbf{~ m L}$.

$$
M_{f}=\frac{M_{i} \times V_{i}}{V_{f}}=\frac{2.0 \mathrm{M} \times 5.00 \mathrm{~mL}}{100.0 \mathrm{~mL}}=0.10 \mathrm{M}
$$

4.8 Titrations

- Use measurements of volumes - volumetric methods of analysis
- Based on stoichiometric reactions between the analyzed solution (analyte) and a solution with known concentration (titrant)
- Equivalence point - the amount of titrant added is stoichiometrically equivalent to the amount of analyte present in the sample
- Indicators - change color at the equivalence point (signal the end of the titration)

- Stoichiometric calculations involving solutions

Fig. 4.16

- Titration calculations

- Example: A $25.0 \mathbf{~ m L ~ H}_{2} \mathrm{SO}_{4}$ solution is titrated with $\mathbf{1 6 . 4} \mathbf{~ m L ~} 0.255 \mathrm{~m} \mathrm{KOH}$ solution. What is the molarity of the acid solution.
\Rightarrow balanced equation:
$2 \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4}^{(\mathrm{aq})} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}^{(\mathrm{aq})}+\mathbf{2 H}_{\mathbf{2}} \mathrm{O}_{\text {(l) }}$
\Rightarrow mole ratio: $\quad\left[1 \mathbf{~ m o l ~} \mathbf{H}_{2} \mathrm{SO}_{4} / \mathbf{2} \mathbf{~ m o l ~ K O H}\right]$ $16.4 \times 10^{-3} \mathrm{~L} \times\left(\frac{0.255 \mathrm{~mol} \mathrm{KOH}}{1 \mathrm{~L}}\right) \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{KOH}}\right)=$ $=2.09 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{2.09 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{25.0 \times 10^{-3} \mathrm{~L}}=8.36 \times 10^{-2} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
- Calculations of the mass of the analyte

Example: A 0.202 g sample of iron ore is dissolved in HCl and all of its $\mathbf{F e}$ content is converted to $\mathbf{F e}^{2+}$. The resulting solution is titrated with $\mathbf{1 6 . 7} \mathbf{~ m L ~} \mathbf{0 . 0 1 0 8} \mathbf{~ m ~ K M n O} 4$ solution. Determine the mass \% of Fe in the sample, if the equation of the redox reaction is: $5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}{ }^{-}+\mathbf{8} \mathrm{H}^{+} \rightarrow$

$$
\rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

\Rightarrow mole ratio: $\quad\left[5 \mathrm{~mol} \mathrm{Fe}{ }^{2+} / 1 \mathrm{~mol} \mathrm{MnO}_{4}{ }^{-}\right]$

\Rightarrow calculate the mass of Fe :

$$
\begin{aligned}
& 16.7 \times 10^{-3} \mathrm{~L} \times\left(\frac{0.0108 \mathrm{~mol} \mathrm{MnO}_{4}^{-}}{1 \mathrm{~L}}\right) \times\left(\frac{5 \mathrm{~mol} \mathrm{Fe}^{2+}}{1 \mathrm{~mol} \mathrm{MnO}_{4}^{-}}\right) \times \\
& \times\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}^{2+}}{1 \mathrm{~mol} \mathrm{Fe}^{2+}}\right)=0.0504 \mathrm{~g} \mathrm{Fe}^{2+} \rightarrow 0.0504 \mathrm{~g} \mathrm{Fe}
\end{aligned}
$$

\Rightarrow calculate the mass \%:
Mass $\% \mathrm{Fe}=\frac{0.0504 \mathrm{~g} \mathrm{Fe}}{0.202 \mathrm{~g} \text { sample }} \times 100 \%=25.0 \%$

Assignments:

- Homework: Chpt. 4/1, 3, 7, 13, 15, 19, 23, 27, 31, 33, 37, 39, 43, 45, 49, 51, 73
- Student Companion: 4.2, 4.4, 4.5

