

The Properties of Gases

- importance in atmospheric phenomena, gas phase reactions, combustion engines, etc.

5.1 The Nature of Gases

- Molecular model of the gaseous state
 - gases fill their containers entirely \rightarrow molecules in constant, rapid, random motion
 - gases are compressible \rightarrow molecules are widely separated

Fig. 5.4

 $P = \frac{F}{A}$

Collision

- g - acceleration of free fall (9.81 m/s²)
- d - density of Hg (13546 kg/m³)
- V - volume of Hg column
- h - height of Hg column (0.760 m at sea level)
- A - area of Hg column base

$$P_{atm} = P_{Hg} = \frac{F}{A}$$
 $F = m_{Hg}g$
 $m_{Hg} = dV = dhA \implies F = dhAg$
 $\implies P_{atm} = \frac{dhAg}{A} = dhg$
 $P_{atm} = 13546 \times 0.760 \times 9.81 = 1.01 \times 10^5 \text{ kg / m} \cdot \text{s}^2$

The Gas Laws

5.4 Boyle's Law

PV

• At constant temperature (*T*) the pressure (*P*) of a fixed amount of gas is inversely proportional to its volume (*V*)

$$P = \frac{k}{V} \qquad k \to \text{ constant (depends on } T)$$

$$= k = \text{constant}$$
 $V \downarrow \Leftrightarrow P \uparrow$

• Assume two states of a gas at constant T- state $1 \rightarrow P_I$, V_I - state $2 \rightarrow P_2$, V_2 $P_I V_I = k$ $P_2 V_2 = k$ $P_I V_I = P_2 V_2$ Example: A 2.0 L sample of oxygen at 10 atm is transferred to a 15.0 L container at constant temperature. What is the new pressure. $V_I = 2.0 \text{ L}$ $P_I = 10 \text{ atm}$ $V_2 = 15.0 \text{ L}$ $P_2 = ?$ $P_2 = \frac{P_1 V_1}{V_2} = \frac{10 \text{ atm} \times 2.0 \text{ L}}{15.0 \text{ L}} = 1.3 \text{ atm}$