5.5 Charles's Law

- At constant pressure (P) the volume (V) of a fixed amount of gas is proportional to its absolute temperature (T)
$V=k^{\prime} T \quad k^{\prime} \rightarrow$ constant (depends on P)

$$
\frac{V}{T}=k^{\prime} \quad T \uparrow \Leftrightarrow V \uparrow
$$

- At constant volume (V) the pressure (P) of a fixed amount of gas is proportional to its absolute temperature (T)
$P=k^{\prime \prime} T$
$k^{\prime \prime} \rightarrow$ constant (depends on V)

$$
\frac{P}{T}=k^{\prime \prime} \quad T \uparrow \Leftrightarrow P \uparrow
$$

Fig. 5.12

- Assume two states of a gas at constant \boldsymbol{V}
- state $1 \rightarrow \boldsymbol{T}_{\mathbf{1}}, \boldsymbol{P}_{\mathbf{1}}$
- state $2 \rightarrow \boldsymbol{T}_{2}, \boldsymbol{P}_{\mathbf{2}}$
$\frac{P_{1}}{T_{1}}=k^{\prime \prime} \quad \frac{P_{2}}{T_{2}}=k^{\prime \prime} \Rightarrow \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
Example: A cylinder containing N_{2} gas at $15^{\circ} \mathrm{C}$ and 50 atm is moved to a new location at $35^{\circ} \mathrm{C}$. What is the new pressure in the cylinder?

$$
\begin{aligned}
& \begin{aligned}
\boldsymbol{T}_{1}=\mathbf{1 5}^{\circ} \mathbf{C}=\mathbf{2 8 8} \mathrm{K} \quad \boldsymbol{P}_{1}=\mathbf{5 0} \mathbf{a t m} \\
\boldsymbol{T}_{2}=\mathbf{3 5}^{\circ} \mathrm{C}=\mathbf{3 0 8} \mathrm{K} \quad \boldsymbol{P}_{2}=?
\end{aligned} \\
& P_{2}=\frac{P_{1} T_{2}}{T_{1}}=\frac{50 \mathrm{~atm} \times 308 \mathrm{~K}}{288 \mathrm{~K}}=53 \mathrm{~atm}
\end{aligned}
$$

5.6 Avogadro's Law

- At constant temperature (T) and pressure (P) the volume (V) of a gas is proportional to its amount (n)

$$
\begin{gathered}
V=\boldsymbol{k}^{\prime \prime \prime} \boldsymbol{n} \\
\frac{V}{n}=k^{\prime \prime \prime \prime} \\
\hline \text { constant }(\text { depends on } \boldsymbol{T}, \boldsymbol{P}) \\
n \uparrow \Leftrightarrow V \uparrow
\end{gathered}
$$

- Molar volume $\left(V_{m}\right)$ - the volume of one mole of a substance

$$
V_{m}=\mathrm{V} / \mathrm{n}
$$

- Avogadro's principle - equal number of moles of different gases occupy the same volume at constant T and P (molar volumes of gases are very similar)
- Assume two states of a gas at constant \boldsymbol{T} and \boldsymbol{P}
- state $1 \rightarrow \boldsymbol{V}_{\boldsymbol{I}}, \boldsymbol{n}_{\boldsymbol{I}}$
- state $2 \rightarrow \boldsymbol{V}_{2}, \boldsymbol{n}_{\mathbf{2}}$
$\frac{V_{1}}{n_{1}}=k^{\prime \prime \prime} \quad \frac{V_{2}}{n_{2}}=k^{\prime \prime \prime} \Rightarrow \quad \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$

5.7 The Ideal Gas Law

V	$=k \frac{1}{P}$		B oyle's Law
V	$=k^{\prime} T$		Charles's Law
V	$=k^{\prime \prime \prime} n$		Avogadro's Law

Combination of the three laws:

$$
\begin{gathered}
V=R \frac{n T}{P} \quad R-\text { proportionality constant } \\
\boldsymbol{P V}=\boldsymbol{n} \boldsymbol{R T} \rightarrow \text { ideal gas law } \\
\boldsymbol{R} \rightarrow \text { gas constant }
\end{gathered}
$$

- Example: A 5.0 L gas sample at 1.0 atm and $10^{\circ} \mathrm{C}$ is moved to a 2.0 L container and heated to $300^{\circ} \mathrm{C}$. What is the new pressure?

$$
P_{1}=1.0 \mathrm{~atm} \quad V_{1}=5.0 \mathrm{~L} \quad T_{1}=10^{\circ} \mathrm{C}=283 \mathrm{~K}
$$

$$
P_{2}=? \quad V_{2}=2.0 \mathrm{~L} \quad T_{2}=300^{\circ} \mathrm{C}=573 \mathrm{~K}
$$

$$
n_{1}=n_{2}
$$

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \quad \Rightarrow \quad P_{2}=\frac{P_{1} V_{1}}{n_{1} T_{1}} \times \frac{n_{2} T_{2}}{V_{2}}
$$

$$
P_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}}=\frac{1.0 \mathrm{~atm} \times 5.0 \mathrm{~L} \times 573 \mathrm{~K}}{283 \mathrm{~K} \times 2.0 \mathrm{~L}}=5.1 \mathrm{~atm}
$$

- Example: A 3.0 g sample of methane, CH_{4}, is placed in a 2.0 L container at $22^{\circ} \mathrm{C}$. What is the pressure in the container?
$P V=n R T$
$V=2.0 \mathrm{~L} \quad T=22^{\circ} \mathrm{C}=295 \mathrm{~K}$
moles of $\mathrm{CH}_{4}(n)$:
$n=3.0 \mathrm{~g} \mathrm{CH}_{4} \times\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.0 \mathrm{~g} \mathrm{CH}_{4}}\right)=0.19 \mathrm{~mol} \mathrm{CH}_{4}$
$P=\frac{n R T}{V}=\frac{0.19 \mathrm{~mol} \times 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 295 \mathrm{~K}}{2.0 \mathrm{~L}}=2.3 \mathrm{~atm}$

5.8 The Molar Volume of Ideal Gases

$$
V_{m}=\frac{V}{n}=\frac{n R T / P}{n}=\frac{R T}{P}
$$

- Standard temperature and pressure (STP)

$$
\mathbf{P}=1.000 \mathrm{~atm} ; T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}
$$

- V_{m} at STP:
$V_{m}=\frac{R T}{P}=\frac{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273.15 \mathrm{~K}}{1.000 \mathrm{~atm}}=22.41 \frac{\mathrm{~L}}{\mathrm{~mol}}$

