5.9 Stoichiometry of Reacting Gases

- The volume ratios of gases in reactions are the same as their mole ratios (follows from Avogadro's principle)

$$
\begin{aligned}
& \mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{N}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g}) \\
& \Rightarrow \mathbf{3 ~ m o l ~} \mathrm{H}_{\mathbf{2}} \text { react with } \mathbf{1 ~ m o l ~} \mathrm{N}_{2} \\
& \Rightarrow \mathbf{3} \mathrm{~L} \mathrm{H}_{\mathbf{2}} \text { react with } \mathbf{1} \mathrm{L} \mathrm{~N}_{2}
\end{aligned}
$$

Example: How many liters of N_{2} are needed to react completely with $5.0 \mathrm{~L} \mathrm{H}_{2}$?

$$
5.0 \mathrm{~L} \mathrm{H}_{2} \times\left[1 \mathrm{~L} \mathrm{~N}_{2} / 3 \mathrm{~L} \mathrm{H}_{2}\right]=1.7 \mathrm{~L} \mathrm{~N}_{2}
$$

- The molar volume is used as a conversion factor between mols and volumes of gases ($\mathrm{V}_{\mathrm{m}}=\mathrm{RT} / \mathrm{P}$)

- Example: Calculate the mass of NaN_{3} needed to produce 10 L of N_{2} in an air bag at $25^{\circ} \mathrm{C}$ and 1.0 atm by the reaction:

$\mathbf{V}_{\mathbf{m}}=\mathbf{2 4 . 4 5} \mathbf{~ L} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$ and 1.0 atm
$10 \mathrm{~L} \times\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{24.45 \mathrm{~L}}\right) \times\left(\frac{6 \mathrm{~mol} \mathrm{NaN}_{3}}{9 \mathrm{~mol} \mathrm{~N}_{2}}\right) \times$ $\times\left(\frac{65.02 \mathrm{~g} \mathrm{NaN}_{3}}{1 \mathrm{~mol} \mathrm{NaN}_{3}}\right)=18 \mathrm{~g} \mathrm{NaN}_{3}$

5.10 Gas Density

$$
\begin{array}{ll}
\text { density }=\frac{\text { mass }}{\text { volume }} & \rightarrow d=\frac{m}{V} \\
\text { molar mass }=\frac{\text { mass }}{\text { moles }} & \rightarrow M=\frac{m}{n} \rightarrow m=n M \\
P V=n R T & \rightarrow n=\frac{P V}{R T} \\
d=\frac{m}{V}=\frac{n M}{V}=\frac{P V M}{R T V} \rightarrow d=\frac{M P}{R T} \rightarrow M=\frac{d R T}{P}
\end{array}
$$

- The density of a gas is proportional to its molar mass and pressure and inversely proportional to its temperature
Example: Calculate the density of O_{2} at STP.

$$
\begin{gathered}
\begin{array}{l}
\boldsymbol{M}=\mathbf{3 2 . 0 0} \mathrm{g} / \mathbf{m o l} \\
\boldsymbol{P}=\mathbf{1 . 0 0 0} \mathrm{atm} \quad \boldsymbol{T}=\mathbf{0}^{\circ} \mathbf{C}=\mathbf{2 7 3 . 1 5} \mathrm{K} \quad(\mathbf{S T P}) \\
d=\frac{M P}{R T}=\frac{32.00 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 1.000 \mathrm{~atm}}{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273.15 \mathrm{~K}}=1.428 \frac{\mathrm{~g}}{\mathrm{~L}}
\end{array} .
\end{gathered}
$$

- Example: Calculate the molar mass of a gas if 2.50 L of it have mass of 0.955 g at $200^{\circ} \mathrm{C}$ and 45.0 Torr.
$d=m / V=0.955 \mathrm{~g} / 2.50 \mathrm{~L}=0.382 \mathrm{~g} / \mathrm{L}$
$T=200^{\circ} \mathrm{C}=473 \mathrm{~K}$
$P=$ 45.0 Torr $\times[1 \mathbf{~ a t m} / 760$ Torr $]=0.0592 \mathbf{~ a t m}$
$M=\frac{d R T}{P}=\frac{0.382 \frac{\mathrm{~g}}{\mathrm{~L}} \times 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 473 \mathrm{~K}}{0.0592 \mathrm{~atm}}=250 \frac{\mathrm{~g}}{\mathrm{~mol}}$

5.11 Mixtures of Gasses

- Mixtures are treated just like pure gases same gas laws apply
- Partial pressure of a gas in a mixture - the pressure the gas would exert if it occupied the container alone
- Dalton's law of partial pressures - the total pressure (\boldsymbol{P}) of a gaseous mixture is the sum of the partial pressures $\left(\boldsymbol{P}_{\boldsymbol{i}}\right)$ of its components

$$
P=P_{A}+P_{B}+\ldots \quad \text { or } \quad P=\Sigma \boldsymbol{P}_{i}
$$

- Mole fraction $\left(\chi_{i}\right)$ of a gas in a mixture - a fraction of the total number of moles that belongs to that gas

$$
\chi_{i}=\frac{n_{i}}{\sum n_{i}}=\frac{n_{i}}{n} \quad \sum n_{i}=n \quad \sum \chi_{i}=1
$$

- The sum of all mol fractions is equal to one
- The ideal gas law can be written for each gas in a mixture in terms of partial pressures

$$
P_{i} V=n_{i} R T \quad P V=n R T
$$

- Example: Calculate the total pressure and the partial pressures of He and Ne in a $\mathbf{2 . 0} \mathbf{L}$ mixture containing 1.0 g He and 2.0 g Ne at $20^{\circ} \mathrm{C}$.
moles of He and $\mathrm{Ne} \rightarrow$ mole fractions of He and $\mathrm{Ne} \rightarrow$ total pressure \rightarrow partial pressures
$1.0 \mathrm{~g} \mathrm{He} \times\left(\frac{1 \mathrm{~mol} \mathrm{He}}{4.00 \mathrm{~g} \mathrm{He}}\right)=0.25 \mathrm{~mol} \mathrm{He}$
$2.0 \mathrm{~g} \mathrm{Ne} \times\left(\frac{1 \mathrm{~mol} \mathrm{Ne}}{20.18 \mathrm{~g} \mathrm{Ne}}\right)=0.099 \mathrm{~mol} \mathrm{Ne}$
$\frac{P_{i} V}{P V}=\frac{n_{i} R T}{n R T} \quad \frac{P_{i}}{P}=\frac{n_{i}}{n}=\chi_{i}$
$P_{i}=\chi_{i} P$
\Rightarrow The partial pressure of a gas is proportional to its mol fraction

$$
\begin{gathered}
\chi_{H e}=\frac{n_{H e}}{n_{H e}+n_{N e}}=\frac{0.25}{0.25+0.099}=0.72 \\
\chi_{N e}=\frac{n_{N e}}{n_{H e}+n_{N e}}=\frac{0.099}{0.25+0.099}=0.28 \\
n=0.25+0.099=0.35 \mathrm{~mol} \\
P V=n R T \quad \rightarrow \quad P=\frac{n R T}{V}
\end{gathered}
$$

$$
\begin{aligned}
& P=\frac{n R T}{V}= \\
& =\frac{0.35 \mathrm{~mol} \times 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 293 \mathrm{~K}}{2.0 \mathrm{~L}}= \\
& =4.2 \mathrm{~atm} \\
& P_{H e}=\chi_{H e} P=0.72 \times 4.2 \mathrm{~atm}=3.0 \mathrm{~atm} \\
& P_{N e}=\chi_{N e} P=0.28 \times 4.2 \mathrm{~atm}=1.2 \mathrm{~atm}
\end{aligned}
$$

