Molecular Motion of Gases

5.12 Diffusion and Effusion

- Diffusion - gradual dispersal of one substance through another
- gases diffuse from places with high to places with low concentration
- Effusion - escape of a substance through a small hole into vacuum
- effusion through porous materials, pin holes, cracks, etc.

For two gases, A and B :

Example: If it takes a certain amount of H_{2} 15 s to effuse through a small hole, how long does it take for the same amount of O_{2} ?
$\frac{t_{e f f}\left(O_{2}\right)}{t_{e f f}\left(H_{2}\right)}=\sqrt{\frac{M_{O_{2}}}{M_{H_{2}}}} \quad t_{\text {eff }}\left(O_{2}\right)=\sqrt{\frac{M_{O_{2}}}{M_{H_{2}}}} \times t_{e f f}\left(H_{2}\right)$
$t_{e f f}\left(O_{2}\right)=\sqrt{\frac{32.00 \mathrm{~g} / \mathrm{mol}}{2.02 \mathrm{~g} / \mathrm{mol}}} \times 15 \mathrm{~s}=60 \mathrm{~s}$

- Same relations are valid in general for the diffusion rate

$$
\frac{E R(A)}{E R(B)}=\sqrt{\frac{M_{B}}{M_{A}}} \quad \frac{t_{e f f}(A)}{t_{e f f}(B)}=\sqrt{\frac{M_{A}}{M_{B}}}
$$

$$
E R \propto \sqrt{\frac{1}{M}}
$$

- The time of effusion $\left(\boldsymbol{t}_{\text {eff }}\right)$ is inversely proportional to $\boldsymbol{E R}$

$$
t_{e f f} \propto \frac{1}{E R} \Rightarrow t_{e f f} \propto \sqrt{M}
$$

Graham's Law - the effusion rate (ER) of a gas is inversely proportional to the square root of its molar mass
diftusion rate

5.13 The Kinetic Model of Gases

- Kinetic Molecular Theory
- Gas particles are in constant, random motion
- Gas particles are negligibly small
- Gas particles move in straight lines and do not interact except during collisions
- The average kinetic energy of gas particles, $\overline{\boldsymbol{E}}_{\boldsymbol{k}}$, is proportional to the absolute temperature, \boldsymbol{T}
- The model is consistent with the properties of ideal gases and provides explanations of the observed deviations from ideal behavior

$$
\begin{aligned}
\bar{E}_{k} \propto T & \bar{E}_{k}=\frac{1}{2} m \overline{v^{2}} \\
\Rightarrow & \overline{v^{2}} \propto T
\end{aligned}
$$

\boldsymbol{m} - mass of particles

$\overline{\boldsymbol{v}^{2}}$ - average square speed

- Root mean square speed of gas particles $\left(\boldsymbol{v}_{r m s}\right)$

$$
\begin{aligned}
v_{r m s}= & \sqrt{\overline{v^{2}}} \\
& v_{r m s}=\sqrt{\frac{3 R T}{M}}
\end{aligned}
$$

Example: Calculate the root mean square speed of N_{2} at $25^{\circ} \mathrm{C}$.

$$
T=25^{\circ} \mathrm{C}=298 \mathrm{~K}
$$

$M=28.02 \mathrm{~g} / \mathrm{mol}=\mathbf{0 . 0 2 8 0 2} \mathrm{kg} / \mathrm{mol}$
$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$v_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 \times 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 298 \mathrm{~K}}{0.02802 \frac{\mathrm{~kg}}{\mathrm{~mol}}}}=515 \sqrt{\frac{\mathrm{~J}}{\mathrm{~kg}}}$
$515 \sqrt{\frac{\mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}}{\mathrm{~kg}}}=515 \sqrt{\frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}=515 \frac{\mathrm{~m}}{\mathrm{~s}}$

- Van der Waals equation:

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

$\boldsymbol{a}, \boldsymbol{b}$ - van der Waals constants (zero for ideal gases)
$a \boldsymbol{n}^{2} / \boldsymbol{V}^{2}$ - pressure correction (a depends on the attractive forces between molecules)
$\boldsymbol{n} \boldsymbol{b}$ - volume correction (\boldsymbol{b} is a measure for the actual volume of the gas molecules)

- Real gases approach ideal behavior at low pressures and high temperatures (away from conditions of condensation)

Assignments:

- Homework: Chpt. 5/5, 9, 13, 15, 19, 21, $29,33,35,39,43,45,49,55,57,63,67,69$, 71, 73, 77, 81, 85, 87
- Student Companion: 5.1, 5.2, 5.3, 5.4

