6.5 Transferring Energy as Work

- Expansion work - due to changes in the volume of the system (important for reactions involving gases)
- If an object is moved over a distance (\boldsymbol{l}) against an opposing force (\boldsymbol{F}), the work is:

$$
w=F \times l
$$

- If a system expands against an external pressure $\left(\boldsymbol{P}_{\text {ext }}\right)$ applied over an area (\boldsymbol{A}), the opposing force (\boldsymbol{F}) is:

$$
F=P_{e x t} \times A \quad \Rightarrow \quad w=P_{e x t} \times A \times l
$$

6.6 Transferring Energy as Heat

- Assuming that only expansion work is done:

$$
\Delta U=q+w=q-P_{e x t} \Delta V
$$

- At constant volume (rigid, sealed container):

$$
\Delta V=0 \quad \Rightarrow \quad \Delta U=q \quad \rightarrow \Delta U=q_{v}
$$

- the heat transferred at constant volume, q_{v}, is equal to the change in the internal energy
- At constant pressure (open container), if the system pressure equals the external pressure:

$$
P=P_{e x t} \quad \Delta U=q-P \Delta V
$$

Example: In a given chemical reaction carried out in an open container at $\mathbf{1 . 0} \mathbf{~ a t m}, 75$ $\mathbf{k J}$ of heat are released in the surroundings and the system expands by $\mathbf{1 0} \mathbf{L}$ due to the gaseous products. Calculate the internal energy change.

$$
\begin{aligned}
P=\text { constant } & \Rightarrow \Delta H=q_{p}=-75 \mathrm{~kJ} \\
& \Rightarrow \Delta U=\Delta H-P \Delta V
\end{aligned}
$$

$\Delta V=+10 \mathrm{~L} \quad P \Delta V=1.0 \mathrm{~atm} \times 10 \mathrm{~L}=10 \mathrm{~L} \cdot \mathrm{~atm}$
$10 \mathrm{~L} \cdot \operatorname{atm} \times(101.325 \mathrm{~J} / 1 \mathrm{~L} \cdot \mathrm{~atm})=1.0 \times 10^{3} \mathrm{~J}=1.0 \mathrm{~kJ}$
$\Delta U=\Delta H-P \Delta V=-75 \mathrm{~kJ}-1.0 \mathrm{~kJ}=-76 \mathrm{~kJ}$

6.7 Exothermic and Endothermic Processes

- Exothermic process - the system releases heat in the surroundings $(\boldsymbol{q}<\mathbf{0})$
- at constant pressure $\left(\Delta \boldsymbol{H}=\boldsymbol{q}_{\boldsymbol{p}}\right) \Rightarrow \Delta \boldsymbol{H}<\mathbf{0}$
- Endothermic process - the system absorbs heat from the surroundings $(\boldsymbol{q}>\mathbf{0})$
- at constant pressure $\left(\Delta \boldsymbol{H}=\boldsymbol{q}_{\boldsymbol{p}}\right) \Rightarrow \Delta \boldsymbol{H}>\mathbf{0}$
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaOH}(\mathrm{aq})+$ energy
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})+$ energy $\xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$ (endo.)
- Specific heat capacity $\left(\boldsymbol{C}_{s}\right)$ - the heat capacity per unit mass of the object

$$
C_{s}=C / m
$$

- units $\mathbf{J} / \mathbf{g} \cdot \mathbf{K}$ or $\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}$ (see Table 6.1)
$C=m C_{s}$ and $C=q / \Delta T \Rightarrow q / \Delta T=m C_{s}$

$$
\Rightarrow q=m C_{s} \Delta T
$$

Example: Calculate the heat needed to warm up 2.5 g of ice from $\mathbf{- 2 0}$ to $-\mathbf{5}^{\circ} \mathrm{C}$. $\left(\boldsymbol{C}_{s}=\mathbf{2 . 0 3} \mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
$\Delta T=T_{f}-T_{i}=-5^{\circ} \mathrm{C}-\left(-20^{\circ} \mathrm{C}\right)=15^{\circ} \mathrm{C}$
$q=m C_{s} \Delta T=2.5 \mathrm{~g} \times 2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 15^{\circ} \mathrm{C}=+76 \mathrm{~J}$

6.8 Measuring Heat

- Heat transfer in or out of an object can be estimated by measuring the temperature change in the object
- Heat capacity (C) - heat required to increase the temperature of an object by $\mathbf{1}^{\circ} \mathrm{C}(\mathbf{K})$

$$
C=q / \Delta T
$$

- units \mathbf{J} / \mathbf{K} or $\mathbf{J} /{ }^{\circ} \mathbf{C}$
- The heat capacity is an extensive property (\boldsymbol{C} increases with the size of the object)
- Calorimeter - a device used to measure heat transfers
- thermally insulated container with a known heat capacity supplied with a thermometer
- the system is placed in the calorimeter which serves as its surroundings
- the heat transfer is estimated from the temperature change of the calorimeter contents
- the system can be a chemical reaction
- Types of calorimeters
- constant pressure calorimeters $\left(\boldsymbol{q}_{\boldsymbol{p}}=\boldsymbol{\Delta H}\right)$
- constant volume calorimeters $\left(\boldsymbol{q}_{v}=\Delta \boldsymbol{U}\right)$

Example: $\mathbf{2 7} \mathbf{g}$ of brass at $\mathbf{1 0 5}^{\circ} \mathrm{C}$ are placed in a coffee-cup calorimeter filled with 100 g of water at $\mathbf{2 0}^{\circ} \mathrm{C}$. The final temperature stabilizes to $\mathbf{2 2}^{\circ} \mathbf{C}$. Calculate the specific heat capacity of brass. $\left[\left(C_{s}\right)_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right]$

$$
\begin{aligned}
& \mathbf{q}_{\text {water }}=-\mathbf{q}_{\text {brass }} \Rightarrow\left(\boldsymbol{m} \boldsymbol{C}_{s} \Delta \boldsymbol{T}\right)_{w}=-\left(m C_{s} \Delta \boldsymbol{T}\right)_{\boldsymbol{b}} \\
&\left(C_{s}\right)_{b}=-\frac{\left(m C_{s} \Delta T\right)_{w}}{(m \Delta T)_{b}}=-\frac{100 \mathrm{~g} \times 4.18 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \times(22-20)^{\circ} \mathrm{C}}{27 \mathrm{~g} \times(22-105)^{\circ} \mathrm{C}}= \\
&=-\frac{100 \times 4.18 \times 2}{27 \times(-83)} \frac{\mathrm{J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}=0.37 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}
\end{aligned}
$$

- Specific heats of dilute aqueous solutions are taken to be the same as that of water.
Example: A reaction between $\mathbf{5 0} \mathbf{g}$ of dilute HCl and $\mathbf{5 0} \mathbf{g}$ of dilute NaOH takes place in a coffee-cup calorimeter. The temperature rises by $2.1^{\circ} \mathrm{C}$. What is the heat of the reaction.
$C_{s} \cong\left(C_{s}\right)_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
$m=50 \mathrm{~g}+50 \mathrm{~g}=100 \mathrm{~g}$
$\Delta T=+2.1^{\circ} \mathrm{C}$
$q=m C_{s} \Delta T=100 \mathrm{~g} \times 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 2.1^{\circ} \mathrm{C}=$
$=8.4 \times 10^{2} \mathrm{~J}=0.84 \mathrm{~kJ}$

