The Thermochemistry of Physical Change

- phase changes:
solid \leftrightarrow liquid \quad liquid \leftrightarrow gas \quad solid \leftrightarrow gas

6.9 Vaporization

- vaporization (liquid \rightarrow gas)
- condensation (gas \rightarrow liquid)
- Vaporization is endothermic - the system absorbs energy needed to overcome the attractive forces between the molecules in the liquid in order to spread them apart in the vapor
- Enthalpy of vaporization $\left(\Delta H_{v a p}\right)$ - the enthalpy change accompanying the conversion of one mole of a liquid into vapor

$$
\begin{aligned}
& \Delta \boldsymbol{H}_{\text {vap }}=\boldsymbol{H}_{\text {vapor }}-\boldsymbol{H}_{\text {liquid }} \\
& \Delta \boldsymbol{H}_{\text {vap }}>0 \text { (endothermic) }
\end{aligned}
$$

- Enthalpy of condensation $\left(\Delta H_{\text {cond }}\right)$

$$
\begin{gathered}
\Delta H_{c o n d}=H_{l i q u i d}-H_{v a p o r}=-\Delta H_{v a p} \\
\Delta H_{\text {cond }}<0 \text { (exothermic) }
\end{gathered}
$$

- The $\boldsymbol{\Delta} \boldsymbol{H}$ for the reverse of any process is the negative of the $\boldsymbol{\Delta} \boldsymbol{H}$ for the forward process (because \boldsymbol{H} is a state function)

Example: The vaporization of $\mathbf{2 3} \mathbf{g}$ of ethanol at $78.5^{\circ} \mathrm{C}$ and 1 atm requires $\mathbf{2 2} \mathbf{~ k J}$ of energy supplied as heat. Calculate the enthalpy of vaporization of ethanol.
$P=$ constant $\Rightarrow \Delta H=q=22 \mathrm{~kJ}$
need ΔH per 1 mol of ethanol
$n=23 \mathrm{~g}$ ethanol $\times\left(\frac{1 \text { mol ethanol }}{46.1 \mathrm{~g} \text { ethanol }}\right)=0.50 \mathrm{~mol}$ ethanol $\Delta H_{\text {vap }}=\frac{22 \mathrm{~kJ}}{0.50 \mathrm{~mol}}=44 \mathrm{~kJ} / \mathrm{mol}$

6.10 Melting and Sublimation

- melting, fusion (solid \rightarrow liquid)
- freezing (liquid \rightarrow solid)
- Enthalpy of fusion $\left(\boldsymbol{\Delta} \boldsymbol{H}_{\text {fus }}\right)$ - the enthalpy change accompanying the conversion of one mole of a solid into liquid

$$
\Delta H_{\text {fus }}=H_{\text {liquid }}-H_{\text {solid }}=-\Delta H_{\text {freez }}
$$

- Melting is endothermic - energy is needed to overcome the forces holding the particles of a solid in position and form the mobile liquid
$\Rightarrow \Delta \boldsymbol{H}_{\text {fus }}>0$ (endothermic); $\Delta \boldsymbol{H}_{\text {freez }}<0$ (exothermic)
- sublimation (solid \rightarrow gas)
- deposition (gas \rightarrow solid)
- Enthalpy of sublimation $\left(\Delta \boldsymbol{H}_{\text {sub }}\right)$ - the enthalpy change accompanying the conversion of one mole of a solid into vapor

$$
\Delta H_{\text {sub }}=H_{\text {vapor }}-H_{\text {solid }}=-\Delta H_{\text {depos }}
$$

- Sublimation is endothermic - energy is needed to overcome the forces holding the particles of a solid in position and form the gas phase
$\Rightarrow \Delta \boldsymbol{H}_{\text {sub }}>0$ (endothermic); $\boldsymbol{\Delta} \boldsymbol{H}_{\text {depos }}<0$ (exothermic)
For $\mathrm{H}_{2} \mathrm{O} \Delta H_{\text {fus }}=6.0 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta H_{\text {sub }}=50 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \boldsymbol{H}_{\text {vap }}=\boldsymbol{H}_{\text {vapor }}-\boldsymbol{H}_{\text {liquid }}$
$\Delta H_{\text {fus }}=H_{\text {liquid }}-\boldsymbol{H}_{\text {solid }}$
$\Delta \boldsymbol{H}_{\text {sub }}=\boldsymbol{H}_{\text {vapor }}-\boldsymbol{H}_{\text {solid }}$
$\Delta \boldsymbol{H}_{\text {vap }}+\Delta \boldsymbol{H}_{\text {fus }}=\boldsymbol{H}_{\text {vapor }}-$ $H_{\text {liquid }}+H_{\text {liquid }}-H_{\text {solid }}=$
$=H_{\text {vapor }}-H_{\text {solid }}=\Delta H_{\text {sub }}$
$\Rightarrow \Delta \boldsymbol{H}_{\text {vap }}+\Delta \boldsymbol{H}_{\text {fus }}=\Delta \boldsymbol{H}_{\text {sub }}$
(true only at constant \boldsymbol{T})

6.11 Heating and Cooling Curves

- Heating (or cooling) curve - a graph of the temperature of a sample as a function of the heat added to (or removed from) it.
- Regions in the heating (cooling) curves
- sloped regions - correspond to temperature changes in the pure solid, liquid or gas phases (slope depends on the heat capacity of each phase)
- flat regions - correspond to phase changes (temperature remains constant)

- Reaction enthalpy $\left(\boldsymbol{\Delta H}_{\boldsymbol{r}}\right)-\boldsymbol{\Delta} \boldsymbol{H}$ reported per one mol of a given reactant or product
- Properties of thermochemical equations
- multiplying an equation by a number multiplies the $\Delta \boldsymbol{H}$ value by the same number
- reversing the direction of a reaction changes the sign of the $\Delta \boldsymbol{H}$ value
$2 \mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 \mathrm { CO } _ { 2 }}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta H=-2 \times 890 \mathrm{~kJ}
$$

$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$

$$
\Delta H=+890 \mathrm{~kJ}
$$

- Example: When $\mathbf{2 . 3 1} \mathbf{g}$ of solid \mathbf{P} reacts with gaseous $\mathbf{C l}_{2}$ to form liquid $\mathbf{P C l}_{\mathbf{3}}$ in a constant pressure calorimeter with $\boldsymbol{C}=\mathbf{2 . 1 6} \mathbf{~ k J} /{ }^{\circ} \mathrm{C}$, the temperature rises by $\mathbf{1 1 . 0 6}^{\mathbf{}} \mathrm{C}$. Write the thermochemical equation.
$q_{\text {surr }}=C \times \Delta T=2.16 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 11.06^{\circ} \mathrm{C}=23.9 \mathrm{~kJ}$ $P=$ constant
$\Rightarrow \Delta H=q_{\text {sys }}=-23.9 \mathrm{~kJ} \quad($ for 2.31 g P$)$
Chem. Eq. $\quad \mathbf{2 P}(\mathrm{s})+\mathbf{3 C l}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathbf{P C l}_{3}(\mathrm{~g})$
\Rightarrow need ΔH for $2 \mathrm{~mol} P$
$2.31 \mathrm{~g} \mathrm{P} \times\left(\frac{1 \mathrm{molP}}{30.97 \mathrm{gP}}\right)=7.46 \times 10^{-2} \mathrm{~mol} \mathrm{P}$
$\Delta H_{r}=\frac{-23.9 \mathrm{~kJ}}{7.46 \times 10^{-2} \mathrm{~mol} \mathrm{P}}=-320 . \mathrm{kJ} / \mathrm{mol} \mathrm{P}$

$$
\Delta H=\frac{-320 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{P}} \times 2 \mathrm{~mol} \mathrm{P}=-641 \mathrm{~kJ}
$$

$$
2 \mathrm{P}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PCl}_{3}(\mathrm{~g}) \quad \Delta H=-641 \mathrm{~kJ}
$$

6.13 Standard Reaction Enthalpies

- $\Delta \boldsymbol{H}_{\boldsymbol{r}}$ depends on the physical states of reactants an products, \boldsymbol{P} and \boldsymbol{T}
- Standard state - the state of a substance in its pure form at $\mathbf{1 ~ a t m}$ and a given temperature (usually $\mathbf{2 9 8} \mathbf{K}$). For substances in solutions, the standard state is at concentrations $\mathbf{1 ~ m o l} / \mathrm{L}$
- Standard reaction enthalpy $\left(\Delta H_{r}{ }^{\mathbf{o}}\right)-\Delta H_{r}$ for a reaction in which all reactants and products are in their standard states

