6.14 Hess's Law

- The enthalpy is a state function $\boldsymbol{\Delta} \boldsymbol{H}$ is independent of the path of the process

$$
\Delta H=\Delta H_{1}+\Delta H_{2}
$$

\Rightarrow multiplying an equation by a factor multiplies the ΔH value by the same factor
\Rightarrow reversing the direction of a reaction changes the sign of the ΔH value

Example: Calculate $\Delta \boldsymbol{H}^{o}$ for the reaction $\mathbf{3 C}(\mathrm{s})+\mathbf{4 H}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}(\mathrm{g})$, given the following:
$\mathrm{A} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathbf{5 O}_{2}(\mathrm{~g}) \rightarrow \mathbf{3 \mathrm { CO } _ { 2 }}(\mathrm{g})+\mathbf{4} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l})$
$\Delta H^{o}=-2220 . \mathrm{kJ}$
$\mathrm{B} \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H^{o}=-394 \mathrm{~kJ}$
C $\mathrm{H}_{2}(\mathrm{~g})+\mathbf{1} / \mathbf{2 O}_{2}(\mathrm{~g}) \rightarrow \mathbf{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{o}=\mathbf{- 2 8 6} \mathrm{kJ}$

- Procedure

- rewrite the given equations by placing the reactants and products from the overall equation on the left and right side of the given equations, respectively (if necessary, reverse the direction of the reactions)

$$
3 \mathrm{C}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})
$$

\Rightarrow reverse direction of eq. A (change sign of ΔH^{o})
A $3 \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{4 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { l }) \rightarrow \mathrm { C } _ { 3 } \mathrm { H } _ { 8 } (\mathrm { g }) + \mathbf { 5 O } _ { 2 } (\mathrm { g })}$

$$
\begin{array}{lll}
& \Delta H^{o}=+\mathbf{2 2 2 0} \mathrm{kJ} \\
\mathrm{~B} & \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{o}=\mathbf{- 3 9 4} \mathrm{kJ} \\
\mathrm{C} & \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{1} / \mathrm{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{o}=\mathbf{- 2 8 6} \mathrm{kJ}
\end{array}
$$

- multiply the given equations by factors in order to match the stoichiometric coefficients of the reactants and products in the overall equation

$$
3 \mathrm{C}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})
$$

\Rightarrow multiply eq. B by 3 and eq. C by 4 (multiply ΔH^{o} by 3 and 4 , respectively)

A $3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathbf{5 O}_{2}(\mathrm{~g})$
$\Delta H^{0}=+2220 . \mathrm{kJ}$
В $3 \mathrm{C}(\mathrm{s})+\mathbf{3 O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H^{o}=-3 \times 394 \mathrm{~kJ}$
C $\mathbf{4 H}(\mathrm{g})+\mathbf{2 O}_{2}(\mathrm{~g}) \rightarrow \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { l }) \quad \Delta H ^ { o } = - \mathbf { 4 } \times \mathbf { 2 8 6 } \mathrm { kJ } , ~}$

- add the sequence of equations and cancel the the species appearing on both sides of the resulting equation
$3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{C}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+$
$+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{5O}_{2}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})+$
$+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathbf{3 C}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$
- add the resulting reaction enthalpies to obtain the overall reaction enthalpy
$\Delta H^{o}=+2220 .+(-3 \times 394)+(-4 \times 286)=-106 \mathrm{~kJ}$
$3 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \quad \Delta H^{o}=-106 \mathrm{~kJ}$

Stoichiometric Calculations Involving Reaction Enthalpies

- The reaction enthalpy (heat of reaction) is treated stoichiometrically as a product of the reaction
- Example: Calculate the standard enthalpy change for the combustion of $\mathbf{1 5} \mathbf{g}$ of octane by the reaction:

$$
\begin{array}{r}
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H^{o}=-10942 \mathrm{~kJ}
\end{array}
$$

- Heat output of combustion reactions important measure of the value of fuels
- Specific enthalpy of fuels - the enthalpy of combustion per $\mathbf{1 g}$ of the fuel (measure of the fuel's practical value and efficiency)
- Enthalpy density of fuels - the enthalpy of combustion per $\mathbf{1} \mathbf{L}$ of the fuel (important when the storage space is limited)

6.16 Standard Enthalpies of Formation

- Standard enthalpy of formation $\left(\Delta H_{f}{ }^{\boldsymbol{g}}\right)$ - the standard enthalpy change for the formation of $\mathbf{1} \mathbf{~ m o l}$ of a substance from its elements in their most stable form (Appendix 2A)
- for elements in their most stable form, $\Delta \boldsymbol{H}_{f}{ }^{o}=\mathbf{0}$ $\mathrm{C}(\mathrm{s}$, graphite $) \quad \rightarrow \quad \Delta H_{f}{ }^{0}=\mathbf{0}$
$\mathrm{C}(\mathrm{s}$, graphite $) \rightarrow \mathrm{C}(\mathrm{s}$, diamond $) \quad \Delta H_{f}{ }^{o}=1.9 \mathrm{~kJ} / \mathrm{mol}$
- for compounds, $\Delta \boldsymbol{H}_{f}{ }^{o}$ can be positive or negative
$\mathbf{2 C}(\mathrm{s})+3 \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{1 / 2 \mathrm { O } _ { 2 }}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$
$\Delta H_{f}{ }^{o}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{I}\right)=-277.7 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

- Example: Calculate the standard enthalpy of combustion of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, using $\boldsymbol{\Delta} \boldsymbol{H}_{\boldsymbol{f}}{ }^{\boldsymbol{o}}$ data from Appendix 2A.

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H^{o}=\Sigma n \Delta H_{f}^{o}(\text { products })-\Sigma n \Delta H_{f}^{o}(\text { reactants }) \\
& \Delta H^{o}=\left[6 \times \Delta H_{f}^{o}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)+6 \times \Delta H_{f}^{o}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)\right]- \\
& \left.\quad-\left[1 \times \Delta H_{f}^{o}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})\right)+6 \times \Delta H_{f}^{o}\left(\mathrm{O}_{2} \mathrm{~g}\right)\right)\right]= \\
& {[6 \times(-393.5)+6 \times(-285.8)]-[1 \times(-1268)+6 \times 0]=} \\
& =-2808 \mathrm{~kJ} \\
& \Delta H_{c}^{o}=-2808 \mathrm{~kJ} / 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=-2808 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Assignments:

- Homework: Chpt. 6/ 1, 7, 11, 15, 17, 21, $23,27,31,33,35,39,45,47,49,53,55,59$, 65, 67, 69, 79, 83
- Student companion: 6.1, 6.5, 6.6

