

• Procedure
 rewrite the given equations by placing the reactants and products from the overall equation on the left and right side of the given equations, respectively (if necessary, reverse the direction of the reactions)
$3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$
\Rightarrow reverse direction of eq. A (change sign of D H^{o})
A $3CO_2(g) + 4H_2O(l) \rightarrow C_3H_8(g) + 5O_2(g)$
$DH^{o} = +2220. \text{ kJ}$
B $C(s) + O_2(g) \rightarrow CO_2(g)$ D $H^o = -394 \text{ kJ}$
C $H_2(g) + 1/2O_2(g) \rightarrow H_2O(l)$ D $H^o = -286 \text{ kJ}$

- multiply the given equations by factors in order to match the stoichiometric coefficients of the reactants and products in the overall equation $3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$ \Rightarrow multiply eq. B by 3 and eq. C by 4 (multiply DH° by 3 and 4, respectively) A $3CO_2(g) + 4H_2O(1) \rightarrow C_3H_8(g) + 5O_2(g)$ $DH^o = +2220. \text{ kJ}$ B $3C(s) + 3O_2(g) \rightarrow 3CO_2(g)$ $DH^o = -3 \times 394 \text{ kJ}$ C $4H_2(g) + 2O_2(g) \rightarrow 4H_2O(1)$ $DH^o = -4 \times 286 \text{ kJ}$

Stoichiometric Calculations Involving Reaction Enthalpies

- The reaction enthalpy (heat of reaction) is treated stoichiometrically as a product of the reaction
- **Example:** Calculate the standard enthalpy change for the combustion of **15 g** of octane by the reaction:

$$\begin{split} 2C_8H_{18}(\textbf{l}) + 25O_2(\textbf{g}) &\rightarrow 16CO_2(\textbf{g}) + 18H_2O(\textbf{l}) \\ \textbf{D}H^o = -10942 \ kJ \end{split}$$

6.15 Enthalpies of Combustion • Standard enthalpy of combustion (DH_c°) - the standard enthalpy change for the combustion of 1 mol of a substance in excess oxygen $2C_8H_{18}(l) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(l)$ $DH^{\circ} = -10942 \text{ kJ}$ $\Delta H_c^{\circ} = \frac{-10942 \text{ kJ}}{2 \text{ mol } C_8H_{18}} = -5471 \frac{\text{kJ}}{\text{mol } C_8H_{18}}$

- Heat output of combustion reactions important measure of the value of fuels
- **Specific enthalpy** of fuels the enthalpy of combustion per **1 g** of the fuel (measure of the fuel's practical value and efficiency)
- Enthalpy density of fuels the enthalpy of combustion per 1 L of the fuel (important when the storage space is limited)

Fuel	Combustion equation	∆ <i>H</i> c°, kJ/mol	Specific enthalpy, kJ/g	Enthalpy density,* kJ/L
hydrogen	$2 H_2(g) + O_2(g) \longrightarrow$			
	2 H ₂ O(l)	-286	142	13
methane	$CH_4(g) + 2O_2(g) \longrightarrow$			
	$CO_2(g) + 2 H_2O(l)$	-890.	55	40.
octane	$2 C_8 H_{18}(l) + 25 O_2(g) \longrightarrow$			
	$16 \text{ CO}_2(g) + 18 \text{ H}_2\text{O}(l)$	-5471	48	3.8×10^{4}
methanol	$2 \text{ CH}_3 \text{OH}(l) + 3 \text{ O}_2(g) \longrightarrow$			
	$2 CO_2(g) + 4 H_2O(l)$	-726	23	1.8×10^{4}

6.16 Standard Enthalpies of Formation

- Standard enthalpy of formation (DH_f) the standard enthalpy change for the formation of 1 mol of a substance from its elements in their most stable form (Appendix 2A)
- for elements in their most stable form, $DH_f^o = 0$ C(s, graphite) \rightarrow $DH_f^o = 0$ C(s, graphite) \rightarrow C(s, diamond) $DH_f^o = 1.9$ kJ/mol - for compounds, DH_f^o can be positive or negative $2C(s) + 3H_2(g) + 1/2O_2(g) \rightarrow C_2H_5OH(l)$ $DH_f^o(C_2H_5OH, l) = -277.7$ kJ/mol C₂H₅OH

• Example: Calculate the standard enthalpy of combustion of glucose, $C_6H_{12}O_6$, using DH_f^o data from Appendix 2A. $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$ $DH^o = \sum nDH_f^o(\text{products}) - \sum nDH_f^o(\text{reactants})$ $DH^o = [6 \times DH_f^o(CO_2(g)) + 6 \times DH_f^o(H_2O(l))] - [1 \times DH_f^o(C_6H_{12}O_6(s)) + 6 \times DH_f^o(O_2(g))] = [6 \times (-393.5) + 6 \times (-285.8)] - [1 \times (-1268) + 6 \times 0] = = -2808 \text{ kJ}$ $DH_c^o = -2808 \text{ kJ}/1 \text{ mol } C_6H_{12}O_6 = -2808 \text{ kJ/mol}$

Assignments:

- Homework: Chpt. 6/ 1, 7, 11, 15, 17, 21, 23, 27, 31, 33, 35, 39, 45, 47, 49, 53, 55, 59, 65, 67, 69, 79, 83
- Student companion: 6.1, 6.5, 6.6