7.4 The Wavelike properties of the Electron

- **de Broglie's hypothesis** all matter has wavelike properties
 - for a particle with mass, *m*, and velocity, *v*, the wavelength is:

$\mathbf{I} = h/mv$

Wave-particle duality of matter - de Broglie's relation combines particle properties (*m*, *v*) with wave properties (*l*)

• Example: Calculate the wavelengths of an electron ($m = 9.109 \times 10^{-31}$ kg) with velocity 2.2×10⁶ m/s and a bullet (m = 5.0 g) traveling at 700. m/s.

$$\mathbf{I}(e^{-}) = \frac{h}{mv} = \frac{6.626 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}}{9.109 \times 10^{-31} \,\mathrm{kg} \times 2.2 \times 10^{6} \,\mathrm{m/s}}$$

= 3.3×10⁻¹⁰ m = 0.33 nm \rightarrow comparable to atomic sizes
$$\mathbf{I}(bul) = \frac{h}{mv} = \frac{6.626 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}}{5.0 \times 10^{-3} \,\mathrm{kg} \times 700. \,\mathrm{m/s}} =$$

= 1.9×10⁻³⁴ m \rightarrow very short, undetectable

- Experimental evidence (Davisson and Germer) - diffraction of electrons by crystal surfaces
 - diffraction patterns are consistent with the wavelength predicted by de Broglie's relation
- The electron can be treated as a wave with a very short wavelength (similar to the wavelength of x-rays)
- The electron confined in the **H** atom can be treated as a standing wave having discrete frequencies (energies) like a guitar string

Models of atoms

- Bohr's model of the **H** atom
 - the electron travels in circular orbits around the nucleus
 - assumes the quantization without explanation
 - does not take into account Heisenberg's uncertainty principle
 - limited success only for the ${\bf H}$ atom
- Schrödinger's model
 - based on the wave-particle duality of the electron
 - the quantization is logically derived from the wave properties of the electron
 - formalism applicable to other atoms

7.5 Atomic Orbitals

• Schrödinger's equation

- the electron wave is described by a wavefunction
 (Ψ) a mathematical function of the wave's amplitude at different points (x, y, z) in space
- the equation provides solutions for the possible wavefunctions and energies of the electron
- only certain solutions for the energy are allowed (waves fit in the atom only for certain energy values)

$$-\frac{\hbar}{2m}\nabla^2\Psi + V\Psi = E\Psi$$

- The solutions for the wavefunction, Ψ , in the H atom are called **atomic orbitals**
- Born's interpretation of the wavefunction the probability to find the electron at a certain point (x, y, z) in space is proportional to the square of the wave function, Ψ^2 , in this point
- The atomic orbitals (Ψ) can be graphically expressed by three-dimensional plots of the probability to find the electron (Ψ^2) around the nucleus – **electron clouds** (electron density)
- **Boundary surfaces** surround the densest regions of the electron cloud

7.6 Energy Levels in the H-atom

• Solutions of Schrödinger's equation for the energy of the electron in the **H** atom

$$E_n = -\frac{hR_H}{n^2}$$
 $n = 1, 2, 3, ...$

- *E* is negative (*E* becomes zero when the e⁻ and the nucleus are infinitely separated)
- R_H is Rydberg's constant (3.29×10¹⁵ Hz)
- **Principal quantum number** (*n*) used to label the *E* levels (*E_n* increases with increasing *n*)

7.7 Quantum Numbers

• Solutions of Schrödinger's equation for the wavefunction of the electron in the **H** atom

Atomic orbitals $\rightarrow \Psi_{n,l,m_l}$

- depend on three quantum numbers used as labels of each solution (n, l, m_l)
- **Principal quantum number** (n) specifies the energy (E_n) of the electron occupying the orbital and the average distance (r) of the electron from the nucleus $(\uparrow n \Rightarrow \uparrow E, \uparrow n \Rightarrow \uparrow r)$

- Angular momentum quantum number (*l*) specifies the shape of the orbital (s, p, d, ...)
- **Magnetic quantum number** (*m*₁) specifies the orientation of the orbital (p_x, p_y, p_z, ...)
- A set of three quantum numbers (*n*, *l*, *m_l*) unambiguously specifies an orbital (Ψ*n*,*l*,*m_l*)
- Possible values of the quantum numbers:

 $n = 1, 2, 3, ..., \infty$ l = 0, 1, 2, ..., n-1 $m_l = -l, -(l-1), ..., -1, 0, 1, ..., l-1, l$ $\Psi_{3,2,1} \text{ (possible)} \qquad \Psi_{2,2,2} \text{ and } \Psi_{3,0,1} \text{ (impossible)}$

- All orbitals with the same value of *n* form a **principal shell**
- All orbitals with the same value of *l* form a **subshell** within a principal shell
- Subshells are labeled with the value of *n* followed by a letter corresponding to the value of *l*

 $l=0 \rightarrow s, \ l=1 \rightarrow p, \ l=2 \rightarrow d, \ l=3 \rightarrow f, \ l=4 \rightarrow g, \dots$

Example: Label the subshell containing the orbital $\Psi_{3,2,-1}$

n = 3 $l=2 \rightarrow d \Rightarrow 3d$ subshell

