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7.4 The Wavelike properties of the 
Electron 

• de Broglie’s hypothesis – all matter has 
wavelike properties 
– for a particle with mass, m, and velocity, v, the 

wavelength is:

 λλ = h/mv

• Wave-particle duality of matter - de Broglie’s
relation combines particle properties (m, v) 
with wave properties (λλ)

• Example: Calculate the wavelengths of an 
electron (m = 9.109××10-31 kg) with velocity 
2.2××106 m/s and a bullet (m = 5.0 g) traveling 
at 700. m/s. 
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• Experimental evidence (Davisson and Germer) 
– diffraction of electrons by crystal surfaces 
– diffraction patterns are consistent with the 

wavelength predicted by de Broglie’s relation 

• The electron can be treated as a wave with a 
very short wavelength (similar to the 
wavelength of x-rays) 

• The electron confined in the H atom can be 
treated as a standing wave having discrete 
frequencies (energies) like a guitar string

Fig. 7.12

• Heisenberg’s uncertainty 
principle – the exact position 
and momentum (velocity) of 
a particle can not be known 
simultaneously 
– consequence of the wave-

particle nature of matter
– the exact location of very 

small particles is not well 
known due to their wave 
properties

– the probability to find a 
particle at a particular 
location depends on the 
amplitude (intensity) of the 
wave at this location  Fig. 7.14

Models of atoms
• Bohr’s model of the H atom 

– the electron travels in circular orbits around the 
nucleus

– assumes the quantization without explanation  
– does not take into account Heisenberg’s uncertainty 

principle 
– limited success only for the H atom

• Schrödinger’s model 
– based on the wave-particle duality of the electron 
– the quantization is logically derived from the wave 

properties of the electron
– formalism applicable to other atoms

7.5 Atomic Orbitals
• Schrödinger’s equation

– the electron wave is described by a wavefunction
(ΨΨ) – a mathematical function of the wave’s 
amplitude at different points (x, y, z) in space 

– the equation provides solutions for the possible 
wavefunctions and energies of the electron 

– only certain solutions for the energy are allowed 
(waves fit in the atom only for certain energy 
values)
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• The solutions for the wavefunction, ΨΨ , in the H
atom are called atomic orbitals

• Born’s interpretation of the wavefunction –
the probability to find the electron at a certain 
point (x, y, z) in space is proportional to the 
square of the wave function, ΨΨ2, in this point 

• The atomic orbitals (ΨΨ) can be graphically 
expressed by three-dimensional plots of the 
probability to find the electron (ΨΨ2) around the 
nucleus – electron clouds (electron density)

• Boundary surfaces – surround the densest 
regions of the electron cloud 

• Orbitals differ by their shapes, sizes and 
orientations in space (s, p, d, f, … -orbitals)

s-orbitals
– spherical shape

– highest density in the center 
at the nucleus (density 
decreases away from the 
nucleus)

– size increases with the 
energy of the orbital 

–higher energy orbitals have 
more complex distribution of 
the electron density Fig. 7.18

• p-orbitals
– figure-eight shaped 
– positive sign of ΨΨ in one of the lobes of the orbital 

and negative in the other lobe
– nodal plane going through the nucleus (surface 

with zero probability to find the electron)
– three possible orientations in space (px, py, pz)

Fig. 7.19

• d-orbitals
– two figure-eight shapes perpendicular to each other  
– opposite signs of ΨΨ in the lobes laying beside each 

other 
– node at the nucleus (zero probability to find the 

electron)
– five possible orientations in space (dz2, dx2-y2, dxy,

dzx, dyz)

Fig. 7.20

7.6 Energy Levels in the H-atom

• Solutions of Schrödinger’s equation for the 
energy of the electron in the H atom
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• E is negative (E becomes zero when the e- and 
the nucleus are infinitely separated)

• RH is Rydberg’s constant (3.29×1015 Hz)

• Principal quantum number (n) – used to label 
the E levels (En increases with increasing n)

• A transition between two E levels 
with quantum numbers n1 and n2

will produce a photon with 
energy equal to the E difference 
between the levels, ∆∆E:
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7.7 Quantum Numbers

• Solutions of Schrödinger’s equation for the 
wavefunction of the electron in the H atom

 Atomic orbitals    →→ ΨΨn,l,ml

– depend on three quantum numbers used as labels of 
each solution (n, l, ml)

• Principal quantum number (n) - specifies the 
energy (En) of the electron occupying the orbital 
and the average distance (r) of the electron from 
the nucleus (↑↑n ⇒⇒ ↑↑E,   ↑↑n ⇒⇒ ↑↑r)

• Angular momentum quantum number (l) –
specifies the shape of the orbital (s, p, d, …)

• Magnetic quantum number (ml) – specifies 
the orientation of the orbital (px, py, pz, ...) 

• A set of three quantum numbers (n, l, ml) 
unambiguously specifies an orbital (ΨΨn,l,ml)

• Possible values of the quantum numbers:
 n = 1, 2, 3, …, ∞∞
 l = 0, 1, 2, …, n-1

 ml = -l, -(l-1), …, -1, 0, 1, …, l-1, l

 ΨΨ3,2,-1 (possible)     ΨΨ2,2,2 and ΨΨ3,0,1 (impossible)

• All orbitals with the same value of n form a 
principal shell

• All orbitals with the same value of l form a 
subshell within a principal shell

• Subshells are labeled with the value of n 
followed by a letter corresponding to the value 
of l

 l=0 →→ s,  l=1 →→ p,  l=2 →→ d,  l=3 →→ f,  l=4 →→ g, …

 Example: Label the subshell containing the 
orbital ΨΨ3,2,-1

 n = 3 l=2 →→ d   ⇒⇒ 3d subshell 

 # of orbitals in a subshell = 2l+1 

Fig. 7.23


