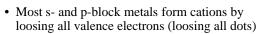
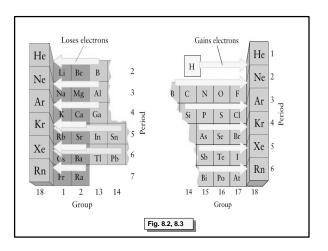
## **Chemical Bonds**

- · Forces holding atoms or ions together
- Bonds form as a result of lowering of the total energy (energy of separated species is higher than that of bonded species)
- Bond formation is accompanied by rearrangement of valence electrons
  - complete transfer of electrons formation of ions (ionic bonding)
  - sharing of electrons formation of molecules (covalent bonding)

## **Ionic Bonds**


 electrostatic attractions between oppositely charged ions in ionic compounds

## 8.1 Lewis Symbols for Atoms and Ions

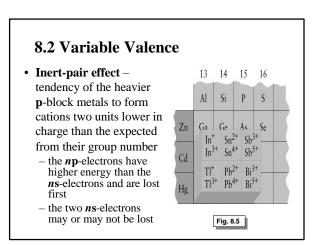

• Lewis symbol – chemical symbol + a dot for each valence electron

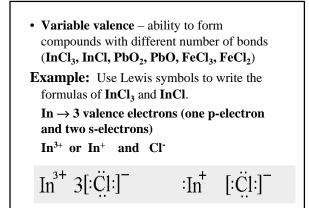
H He:  $\dot{N}$  :O:  $\ddot{C}l$ 

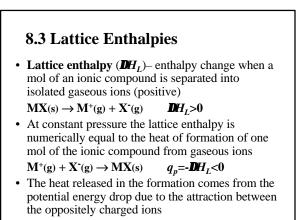
- single dots single electrons
- double dots paired electrons



- s-block metals achieve the electron configuration of the previous noble gas (closed shell)
  K· → K<sup>+</sup> ↔ [Ar]
- **p**-block metals achieve a pseudo-noble gas electron configuration, [NobleGas](*n*-1)d<sup>10</sup> :Ga<sup>•</sup> → Ga<sup>3+</sup> ↔ [Ar]3d<sup>10</sup>
- Nonmetals form anions by gaining electrons until they reach the configuration of the next noble gas, ns<sup>2</sup>np<sup>6</sup> (closed shell)
- Noble gas configuration eight valence e<sup>-</sup> (octet), or two valence e<sup>-</sup> (duplet) for He





- Electrons lost by the metal are gained by the nonmetal
- Both positive and negative ions reach **octet** (or **duplet**) electron configurations


**Example:** Predict the formula of magnesium chloride using Lewis structures.

 $\begin{array}{l} Mg-group \ 2 \rightarrow 2 \ valence \ e^{-} \rightarrow loss \ of \ 2 \ e^{-} \\ Cl-group \ 17 \rightarrow 7 \ valence \ e^{-} \rightarrow gain \ of \ 1 \ e^{-} \end{array}$ 

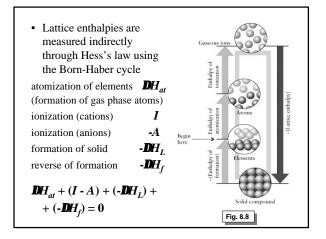
$$\ddot{C}l + Mg + \ddot{C}l \rightarrow 2[\ddot{C}l] + Mg^{2}$$







• Potential energy of interaction between two ions with charges  $q_1$  and  $q_2$  separated by a distance  $r_{12}$ 


$$E_p \propto \frac{q_1 q_2}{r_{12}}$$

 $\Rightarrow$  the lattice enthalpy increases with increasing the charge of the ions and decreasing the distance between them (decreasing the size of the ions)

· the charge factor is more dominant

• the size factor becomes important when comparing ionic compounds with equivalent ionic charges

| Halides           |       |                   |      |                   |       |                   |      |
|-------------------|-------|-------------------|------|-------------------|-------|-------------------|------|
| LiF               | 1046  | LiCl              | 861  | LiBr              | 818   | LiI               | 759  |
| NaF               | 929   | NaCl              | 787  | NaBr              | 751   | NaI               | 700  |
| KF                | 826   | KCl               | 717  | KBr               | 689   | KI                | 645  |
| AgF               | 971   | AgCl              | 916  | AgBr              | 903   | AgI               | 887  |
| BeCl <sub>2</sub> | 3017  | MgCl <sub>2</sub> | 2524 | CaCl <sub>2</sub> | 2260. | SrCl <sub>2</sub> | 2153 |
|                   |       | $MgF_2$           | 2961 | $CaBr_2$          | 1984  |                   |      |
| Oxides            |       |                   |      |                   |       |                   |      |
| MgO               | 3850. | CaO               | 3461 | SrO               | 3283  | BaO               | 3114 |
| Sulfides          |       |                   |      |                   |       |                   |      |
| MgS               | 3406  | CaS               | 3119 | SrS               | 2974  | BaS               | 2832 |



**Example:** Calculate the lattice enthalpy of KBr.  $DH_{at} + (I - A) + (-DH_L) + (-DH_f) = 0$ 

$$\begin{aligned} \mathbf{D}H_L &= \mathbf{D}H_{at} + \mathbf{I} \cdot \mathbf{A} \cdot \mathbf{D}H_f = \\ &= \mathbf{D}H_f(\mathbf{K}, \mathbf{g}) + \mathbf{D}H_f(\mathbf{Br}, \mathbf{g}) + \mathbf{I}(\mathbf{K}) \cdot \mathbf{A}(\mathbf{Br}) - \\ &\quad \cdot \mathbf{D}H_f(\mathbf{KBr}, \mathbf{s}) \end{aligned}$$

Data from Appendix 2A and 2D:  $DH_L = [89 + 112 + 418 - 325 - (-394)] \text{ kJ/mol} =$ = 688 kJ/mol