

8.6 The Octet Rule and Lewis Structures

- Octet rule in covalent bonding atoms share pairs of electrons until they reach octet (or duplet) configurations of noble gases
 - valence number of covalent bonds an atom forms (number of shared e⁻ pairs)
 - the number of shared e⁻ pairs equals the number of electrons an atom needs in order to complete its octet (or duplet) structure

 $: \overset{\circ}{\text{Cl}} \cdot + \cdot \overset{\circ}{\text{Cl}} : \longrightarrow (\overset{\circ}{\text{Cl}} \cdot \overset{\circ}{\text{Cl}} :) \text{ or } : \overset{\circ}{\text{Cl}} - \overset{\circ}{\text{Cl}} :$

- shared (bonding) e⁻ pairs between the atoms (can be expressed as lines representing bonds)
 - lone e⁻ pairs - not involved in bonding (not shared)
- **Example:** Write the Lewis structure of HCl and determine the number of shared and lone e⁻ pairs.

 $H + \ddot{C}l \rightarrow (H)\ddot{C}l$ or $H-\ddot{C}l$

3 lone pairs at Cl and 1 bonding (shared) pair

- Arrangement of atoms in polyatomic species (skeleton structure)
 - central atom usually the atom with the lowest *I* (often written first in the formula) PCl₅, SO₃, ...
 - normally ${\boldsymbol{H}}$ is not a central atom
 - normally the atoms are arranged symmetrically around the central atom $CO_2 \rightarrow OCO, OF_2 \rightarrow FOF$
- · Polyatomic ions
 - cations and anions of an ionic compound are treated separately
 - total number of valence $e^{\text{-}}$ is adjusted for the charge of the ion

- - 2 count the total number of valence electrons, n_{tot} , of all atoms (correct for the charges of ions)
 - 3 count the number of remaining electrons, **n**_{rem} (total number of **e**⁻ minus **e**⁻ used in the skeleton structure)
 - 4 count the number of needed electrons, \mathbf{n}_{need} (the eneeded to complete the octet (or duplet) structures of all atoms)
 - 5 if $n_{need} = n_{rem}$, add the remaining e^- as lone pairs to complete the octets for all atoms, or

if $n_{need} > n_{rem}$ add multiple bonds (1 bond for each deficient pair of e^{-}) and complete the structure with lone pairs

Example: Write the Lewis structure of HCN.

- 1. C is the central atom (lower *I* than N)
 - \Rightarrow H–C–N (4 e⁻ in the skeleton structure)
- 2. $n_{tot} = 1(H) + 4(C) + 5(N) = 10$
- 3. $n_{rem} = 10 4 = 6$
- 4. $n_{need} = 0(H) + 4(C) + 6(N) = 10$
- 5. **n**_{need} > **n**_{rem} deficiency of 4 e⁻ (2 e⁻ pairs) ⇒ add 2 more bonds between C and N and complete the structure with lone pairs

H–C≡N:

Example: Write the Lewis structure of SO_4^{2} .

- 1. S is the central atom (lower *I* than O)
- 2. 8 e⁻ in the skeleton structure
 - $n_{tot} = 6(S) + 4 \times 6(O) + 2(charge) = 32$
- 3. $n_{rem} = 32 8 = 24$
- 4. $n_{need} = 0(S) + 4 \times 6(O) = 24$
- 5. $\mathbf{n}_{need} = \mathbf{n}_{rem} \Rightarrow$ complete the structure with lone pairs

- Neither of the resonance structures is realistic
- The real structure is a blend (resonance hybrid) of the contributing Lewis structures
- The three bonds are identical (intermediate between a single and a double bond)

