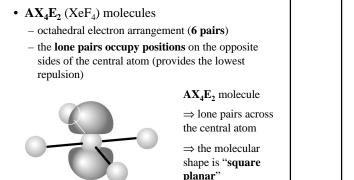
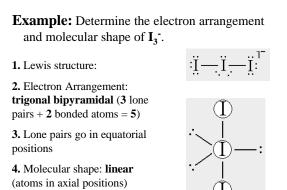
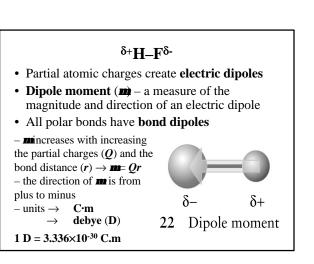
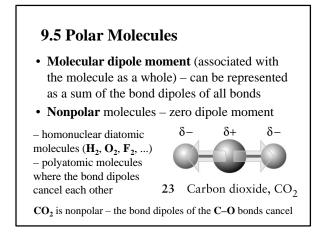

9.3 Molecules with Lone Pairs at the Central Atom (continued)

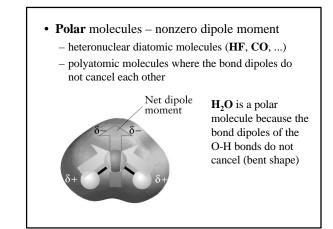
- Strengths of electron pair repulsions
 lone pair-lone pair > lone pair-bonding pair
 > bonding pair-bonding pair
- In the electron arrangement, lone pairs occupy positions as far from one another and from bonding pairs as possible
- $\mathbf{AX_2E}$ (O₃), $\mathbf{AX_3E}$ (NH₃) and $\mathbf{AX_2E_2}$ (H₂O) molecules
 - **observed bond angles are smaller** than the predicted from the electron arrangement

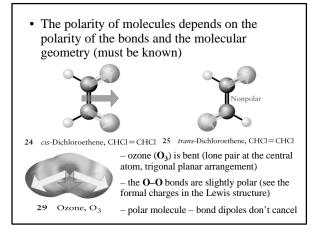
- AX_4E (SF₄), AX_3E_2 (ClF₃) and AX_2E_3 (XeF₂) molecules
 - trigonal bipyramidal electron arrangement (5 pairs)
 - the **lone pairs occupy equatorial positions** (provides the lowest repulsion)

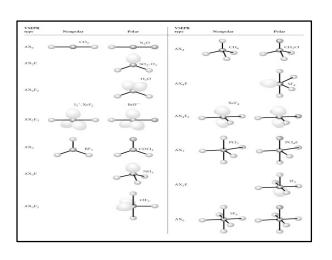

Fig. 9.9

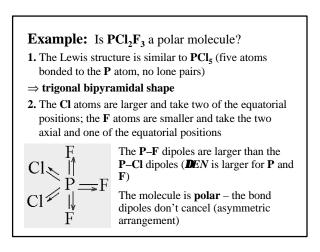



Charge Distribution in Molecules


9.4 Polar Bonds

- Unequal sharing of the bonding electrons *EN* difference between the bonded atoms
 - the more electronegative atoms acquire partial negative charges (have greater share of the bonding electrons)
 - the less electronegative atoms acquire partial positive charges
- Polar covalent bond partial ionic character
 partial atomic charges increase with increasing DEN





- Highly symmetric molecules are normally nonpolar
 - AX_n molecules (n=2, 3, 4, 5, 6) where X are atoms of the same element
 - molecules with symmetrically positioned lone pairs (AX_2E_3, AX_4E_2)
- Molecules with asymmetrically positioned lone pairs or different atoms attached to the central atom are normally polar
 - $-\mathbf{A}\mathbf{X}_{2}\mathbf{E}, \mathbf{A}\mathbf{X}_{2}\mathbf{E}_{2}, \mathbf{A}\mathbf{X}_{3}\mathbf{E}, \mathbf{A}\mathbf{X}_{3}\mathbf{E}_{2}, \mathbf{A}\mathbf{X}_{4}\mathbf{E}, \mathbf{A}\mathbf{X}_{5}\mathbf{E}, \dots$
 - CF₃H, CF₂H₂, SO₂(bent), ...

