The Strengths and Lengths of Bonds

- bond strengths and lengths depend largely on the bond order (single, double or triple) and have similar values in different molecules

9.6 Bond Strengths

- Bond enthalpy $\left(\Delta H_{B}\right)$ - the enthalpy change for the dissociation of one mole bonds from molecules in the gas phase

$$
\mathrm{A}-\mathrm{B}(\mathrm{~g}) \rightarrow \mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \quad \Delta H^{o}=\Delta H_{B}>0
$$

- $\Delta \boldsymbol{H}_{\boldsymbol{B}}$ is a measure of the strength and stability of chemical bonds

$$
\text { Large } \Delta \boldsymbol{H}_{\boldsymbol{B}} \Leftrightarrow \text { stronger bonds }
$$

9.7 Bond Strengths in Polyatomic Molecules

- The strength of the bond between a given pair of atoms varies slightly in different molecules
- Average bond enthalpies $\left(\Delta H_{B}\right)$ - averaged over many compounds
- Average bond enthalpies can be used to estimate the enthalpy changes of reactions in the gas phase (only approximate values)

$$
\Delta H^{o}(\text { reaction })=\Delta H_{B}(\text { broken })-\Delta H_{B}(\text { formed })
$$

- energy is absorbed (+) to break the bonds of the reactants and emitted (-) during forming the bonds of the products

Example: Estimate the standard enthalpy of the
reaction $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})$

1. Lewis structures are needed to get the bond order
2. bonds broken (reactants):

4 C-H ($412 \mathrm{~kJ} / \mathrm{mol}$), $2 \mathrm{~F}-\mathrm{F}(158 \mathrm{~kJ} / \mathrm{mol})$
3. bonds formed (products):

2 C-H ($412 \mathrm{~kJ} / \mathrm{mol}$), 2 C-F ($484 \mathrm{~kJ} / \mathrm{mol}$), $2 \mathrm{H}-\mathrm{F}$ ($565 \mathrm{~kJ} / \mathrm{mol}$)
$\Delta H^{o}=\Delta H_{B}($ broken $)-\Delta H_{B}($ formed $)=[4 \times 412+$ $\mathbf{2} \times 158]-[\mathbf{2} \times \mathbf{4 1 2}+\mathbf{2 \times 4 8 4}+\mathbf{2} \times 565]=-958 \mathrm{~kJ}$
(this value is only an estimate, the exact value can be calculated using $\Delta \boldsymbol{H}_{f}{ }^{o}$ data)

- Bond lengths decrease with increasing the bond order
- Bond lengths increase with increasing the size of the bonded atoms

$\mathbf{N} \equiv \mathbf{N}$	$\mathrm{O}=0$
F-F	
110 pm	121 pm
142 pm	
- In general shorter bonds are stronger	
Fig. 9.23	

9.8 Bond Lengths

- Bond length - the distance between the centers of two bonded atoms
$\left.\begin{array}{|cccc|}\hline \text { Table } 9.4 & \text { Average and actual bond lengths } \\ \text { Average bond length, } \\ \text { pm }\end{array} \quad \begin{array}{c}\text { Molecule }\end{array} \quad \begin{array}{c}\text { Bond length, } \\ \text { pm }\end{array}\right]$
- Covalent radii of atoms - contributions of individual atoms to the lengths of covalent bonds
- average values are tabulated
- values depend on the bond order
- Bond lengths equal the sum of the covalent radii of the bonded atoms
Example: Estimate the bond lengths in HCN

1. Lewis structure: $\quad \mathbf{H}-\mathbf{C} \equiv \mathbf{N}$:
2. Covalent radii: $\quad-\mathbf{H}(\mathbf{3 7} \mathrm{pm}),-\mathbf{C}(77 \mathrm{pm})$, $\equiv \mathbf{C}(60 \mathrm{pm}), \equiv \mathrm{N}(55 \mathrm{pm})$
3. $\mathrm{r}(\mathrm{H}-\mathrm{C})=37+77=114 \mathrm{pm} ; \mathrm{r}(\mathrm{C} \equiv \mathrm{N})=60+55=115 \mathrm{pm}$
