

9.7 Bond Strengths in Polyatomic Molecules

- The strength of the bond between a given pair of atoms varies slightly in different molecules
- Average bond enthalpies (DH_B) averaged over many compounds
- Average bond enthalpies can be used to estimate the enthalpy changes of reactions in the gas phase (only approximate values)

DH^o(**reaction**) = **DH**_B(**broken**) - **DH**_B(**formed**) - energy is absorbed (+) to break the bonds of the reactants and emitted (-) during forming the bonds of the products

Bond	Average bond enthalpy	Bond	Average bond enthalpy
С—Н	412	C-I	238
С-С	348	N-H	388
C = C	612	N-N	163
C C*	518	N=N	409
C≡C	837	N-O	210.
C-O	360.	N=O	630.
C=O	743	N-F	195
C-N	305	N-Cl	381
C-F	484	О-Н	463
C-Cl	338	0-0	157
C-Br	276		

Example: Estimate the standard enthalpy of the reaction $CH_4(g) + 2F_2(g) \rightarrow CH_2F_2(g) + 2HF(g)$ **1. Lewis structures are needed to get the bond order 2. bonds broken (reactants): 4** C–H (412 kJ/mol), 2 F–F (158 kJ/mol) **3. bonds formed (products): 2** C–H (412 kJ/mol), 2 C–F (484 kJ/mol), 2 H–F (565 kJ/mol) **D** $H^o = DH_B(broken) - DH_B(formed) = [4\times412 + 2\times158] - [2\times412 + 2\times484 + 2\times565] = -958 kJ$ (this value is only an estimate, the exact value can be calculated using DH_f^o data)

9.8 Bond Lengths

• **Bond length** – the distance between the centers of two bonded atoms

Bond	Average bond length, pm	Molecule	Bond length pm
с—н	109	Н,	74
C-C	154	N_2	110.
C = C	134	0,	121
C C*	139	F_2	142
$C \equiv C$	120.	Ċĺ,	199
с—о	143	Br_2	228
C = O	112	I.2	268
О-Н	96		
N-H	101		

- Bond lengths decrease with increasing the bond order
- Bond lengths increase with increasing the size of the bonded atoms

- **Covalent radii** of atoms contributions of individual atoms to the lengths of covalent bonds
 - average values are tabulated
 - values depend on the bond order
- Bond lengths equal the sum of the covalent radii of the bonded atoms

Example: Estimate the bond lengths in HCN

- **1.** Lewis structure: **H**−**C≡N**:
- 2. Covalent radii: −H (37 pm), −C (77 pm), ≡C (60 pm), ≡N (55 pm)
- 3. r(H-C) = 37+77=114pm; r(C=N) = 60+55=115pm