Valence-Bond (VB) Theory

- covalent bonds result from the overlap of valence atomic orbitals on neighboring atoms occupied by unpaired electrons and formation of electron pairs

9.9 Sigma- and Pi-Bonds

- The overlap (merging) of atomic orbitals can occur in two geometric configurations
- end-to-end overlap along the internuclear axis ($\boldsymbol{\sigma}$ bonding)
- side-by-side overlap on each side of the internuclear axis (π-bonding)
 orbitals always leads to $\boldsymbol{\sigma}$ bonds

| The $\mathbf{2} \mathbf{p}_{\mathbf{z}}$ orbitals overlap end-to-
 end along the internuclear
 axis and form a $\boldsymbol{\sigma}$-bond
 The $\mathbf{2} \mathbf{p}_{\mathbf{x}}$ orbitals are
 perpendicular to the $\mathbf{2} \mathbf{p}_{\mathbf{z}}$
 orbitals and overlap side-by-
 side to form a $\boldsymbol{\pi}$-bond
 The $\mathbf{2} \mathbf{p}_{\mathbf{y}}$ orbitals are
 perpendicular to the $\mathbf{2} \mathbf{p}_{\mathbf{z}}$ and
 $\mathbf{2} \mathbf{p}_{\mathbf{x}}$ orbitals and also overlap
 side-by-side to for a $\boldsymbol{\pi}$-bond
 For the $\boldsymbol{\pi}$-bonds the electron
 density increases in the
 regions of overlap on each
 side of the internuclear axis$\quad$$\pi$-bond |
| :--- | :--- |

9.10,11 Hybridization

- Without modifications the VB theory predicts bond angles of 90° at the central atom of polyatomic molecules such as $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and CH_{4} which is inconsistent with the experiment

- $\mathbf{s p}^{\mathbf{3}}$ hybridization - a combination of one \mathbf{s} and three \mathbf{p} orbitals
- the resulting four $\mathbf{s p}^{\mathbf{3}}$ hybrid orbitals are identical and point toward the corners of a tetrahedron (used to describe the tetrahedral e^{-}arrangement, bond angles 109.5°)
Example: $\mathbf{C H}_{4}$ (tetrahedral electron arrangement)

- The valence orbitals of the central atom must be modified in order to reproduce the experimentally observed bond angles
- Hybridization - mathematical mixing of two or more valence orbitals on the same atom

- result \rightarrow hybrid orbitals

- the hybrid orbitals have shapes and orientations different than the original orbitals being mixed
- the number of hybrid orbitals equals the number of original orbitals
- the hybrid orbitals have equal energies (average of the energies of the original orbitals)

The s-orbitals of the four \mathbf{H} atoms overlap with the four $\mathbf{s p}^{\mathbf{3}}$ hybrids and form four $\boldsymbol{\sigma}$-bonds with tetrahedral arrangement (bond angles of $\mathbf{1 0 9 . 5}{ }^{\circ}$)

- $\mathbf{s p}^{2}$ hybridization - a combination of one \mathbf{s} and two \mathbf{p} orbitals
- the resulting three $\mathbf{s p}^{\mathbf{2}}$ hybrid orbitals are identical and point toward the corners of an equilateral triangle (used to describe the trigonal planar electron arrangement, bond angles $\mathbf{1 2 0}^{\circ}$)
- sp hybridization - a combination of one \mathbf{s} and one \mathbf{p} orbitals
- the resulting two sp hybrid orbitals are identical and have linear orientation (used to describe the linear electron arrangement, bond angles $\mathbf{1 8 0}^{\circ}$)

Example: $\mathrm{CH}_{\mathbf{2}} \mathbf{O}$ (trigonal planar arrangement)

the \mathbf{C} atom is in $\mathbf{s p}^{\mathbf{2}}$ hybridization; two of the $\mathbf{s p}^{\mathbf{2}}$ hybrids are used to form $\boldsymbol{\sigma}$-bonds with the $\mathbf{H s}$ and one with the \mathbf{O}
the \mathbf{O} atom is also in $\mathbf{s p}^{2}$ hybridization; two of the $\mathbf{s p}^{\mathbf{2}}$ hybrids are used to hold the lone pairs and one to form a σ-bond with C
the unhybridized p-orbitals of \mathbf{C} and \mathbf{O} overlap side-by-side to form a π-bond

Fig. 9.33, 34

