

Measurements and Moles

- qualitative analysis - determination of chemical and physical properties
- quantitative analysis - determination of chemical amounts and composition

Measurements and Units

- measurements - quantitative observations
- units - standards used to compare measurements (yard \rightarrow standard for comparison of length measurements)

2.1 The SI System

- Based on the metric system (France)
- SI base units
quantity $=$ number \times unit
5.5 seconds $=5.5 \times 1 \mathrm{~s}$

2.2 Prefixes for Units

- Prefixes
- denote powers of 10
- can be used with any unit
$1 \mathrm{~mm}=10^{-3} \times(1 \mathrm{~m})=10^{-3} \mathrm{~m}$
$1 \mathrm{MW}=10^{6} \times(1 \mathrm{~W})=10^{6} \mathrm{~W}$
$1 \mu s=10^{-6} \times(1 \mathrm{~s})=10^{-6} \mathrm{~s}$
$1 \mathrm{ng}=10^{-9} \times(1 \mathrm{~g})=10^{-9} \mathrm{~g}$

Table 2.2 prefixes				Common SI
Prefix	Name	Meaning		
G	giga	10^{9}		
M	mega	10^{6}		
k	kilo	10^{3}		
d	deci	10^{-1}		
c	centi	10^{-2}		
m	milli	10^{-3}		
μ	micro	10^{-6}		
n	nano	10^{-9}		
p	pico	10^{-12}		

2.3 Derived Units

- Derived from the base units
$-\operatorname{volume}(V) \rightarrow 1 \mathrm{~m}^{3}=(1 \mathrm{~m}) \times(1 \mathrm{~m}) \times(1 \mathrm{~m})$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}=(1 \mathrm{~cm}) \times(1 \mathrm{~cm}) \times(1 \mathrm{~cm})=$
$=\left(10^{-2} \mathrm{~m}\right) \times\left(10^{-2} \mathrm{~m}\right) \times\left(10^{-2} \mathrm{~m}\right)=\left(10^{-2} \times 10^{-2} \times 10^{-2}\right) \mathrm{m}^{3}=10^{-6} \mathrm{~m}^{3}$
- density $(d) \rightarrow$ mass (m) per unit volume (V)
$\rightarrow(d=m / V)$
unit of $\boldsymbol{d}=(\mathbf{1 ~ k g}) /\left(1 \mathbf{m}^{\mathbf{3}}\right)=\mathbf{1} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
- velocity $(v) \rightarrow$ distance (l) per unit time (t) $\rightarrow(v=l / t)$
unit of $v=(1 \mathrm{~m}) /(1 \mathrm{~s})=1 \mathrm{~m} / \mathrm{s}$
- extensive properties - depend on sample size (mass, volume, length, ...)
- intensive properties - independent of sample size (density, temperature, color, ...)

Examples:

- What is the density of an alloy, if $\mathbf{5 5} \mathbf{g}$ of it displace 9.1 mL of water?
$d=m / V=(55 \mathrm{~g}) /(9.1 \mathrm{~mL})=6.0 \mathrm{~g} / \mathrm{mL}=6.0 \mathrm{~g} / \mathrm{cm}^{3}$
- What is the mass of $7.3 \mathrm{~cm}^{3}$ of this alloy?
$m=V \times d=\left(7.3 \mathrm{~cm}^{3}\right) \times\left(6.0 \mathrm{~g} / \mathrm{cm}^{3}\right)=44 \mathrm{~g}$

2.4 Unit Conversions

- Systems of units (metric, English, SI, ...)
- Equalities between units
$1 \mathrm{in}=2.54 \mathrm{~cm}$
$1 \mathrm{~km}=10^{3} \mathrm{~m}$
- Conversion factors - ratios between two equal or equivalent units (derived from equalities)
[$1 \mathrm{in} / 2.54 \mathrm{~cm}$] or [$2.54 \mathrm{~cm} / 1 \mathrm{in}$]
- Unit conversions (old unit \rightarrow new unit) - quantity remains the same; units change new unit $=$ (old unit) \times (conversion factor) conversion factor $=($ new unit $) /($ old unit $)$ new unit $=$ old unit \times [new unit / old unit] - the old units cancel

Example:

- Convert 5.13 inches in centimeters.

Example:

- Two cities are $\mathbf{2 5 0} \mathbf{~ m i}$ apart. What is this distance in $\mathbf{k m}$?
$1 \mathbf{k m}=0.6214 \mathrm{mi}$
$250 \mathrm{mi} \times[1 \mathrm{~km} / \mathbf{0 . 6 2 1 4} \mathrm{mi}]=402 \mathrm{~km}$

Example:

- Convert the speed of sound, $\mathbf{3 3 2} \mathbf{~ m} / \mathbf{s}$, to $\mathbf{~ k m} / \mathbf{h r}$.
\Rightarrow need to convert both the numerator and denominator

$$
\mathrm{m} \rightarrow \mathrm{~km} \quad \text { and } \quad \mathrm{s} \rightarrow \mathbf{h r}
$$

$1 \mathrm{~km}=10^{\mathbf{3}} \mathrm{m}$ and $1 \mathrm{hr}=60 \mathrm{~min}=3600 \mathrm{~s}$
$332 \mathrm{~m} / \mathrm{s} \times\left[1 \mathrm{~km} / \mathbf{1 0}^{\mathbf{3}} \mathrm{m}\right] \times[\mathbf{3 6 0 0} \mathrm{s} / \mathbf{1 ~ h r}]=1195 \mathrm{~km} / \mathrm{hr}$

