

Measurements and Moles

- qualitative analysis determination of chemical and physical properties
- quantitative analysis determination of chemical amounts and composition

Measurements and Units

- measurements quantitative observations
- units standards used to compare measurements (yard->standard for comparison of length measurements)

2.2 Prefixes for Units

- Prefixes
 - denote powers of 10
 can be used with any unit

 $1 \text{ mm} = 10^{-3} \times (1 \text{ m}) = 10^{-3} \text{ m}$

 $1 \text{ MW} = 10^6 \times (1 \text{ W}) = 10^6 \text{ W}$

```
1 \ \mu s = 10^{-6} \times (1 \ s) = 10^{-6} \ s
```

```
1 ng = 10^{-9} \times (1 \text{ g}) = 10^{-9} \text{ g}
```

prefixes		
Prefix	Name	Meaning
G	giga	10^{9}
М	mega	10^{6}
k	kilo	10^{3}
d	deci	10^{-1}
с	centi	10^{-2}
m	milli	10^{-3}
μ	micro	10^{-6}
n	nano	10^{-9}
р	pico	10^{-12}

2.3 Derived Units

- Derived from the base units
 - volume $(V) \rightarrow 1 \text{ m}^3 = (1 \text{ m}) \times (1 \text{ m}) \times (1 \text{ m})$
 - $1 \text{ mL} = 1 \text{ cm}^3 = (1 \text{ cm}) \times (1 \text{ cm}) \times (1 \text{ cm}) =$
 - = $(10^{-2} \text{ m}) \times (10^{-2} \text{ m}) \times (10^{-2} \text{ m}) = (10^{-2} \times 10^{-2} \times 10^{-2}) \text{ m}^3 = 10^{-6} \text{ m}^3$
 - density $(d) \rightarrow \text{mass}(m)$ per unit volume (V) $\rightarrow (d = m/V)$

unit of
$$d = (1 \text{ kg})/(1 \text{ m}^3) = 1 \text{ kg/m}^3$$

- velocity $(v) \rightarrow$ distance (l) per unit time (t) $\rightarrow (v = l/t)$

unit of v = (1 m)/(1 s) = 1 m/s

- extensive properties depend on sample size (mass, volume, length, ...)
- intensive properties independent of sample size (density, temperature, color, ...)

Examples:

• What is the density of an alloy, if **55 g** of it displace **9.1 mL** of water?

 $d = m/V = (55 \text{ g})/(9.1 \text{ mL}) = 6.0 \text{ g/mL} = 6.0 \text{ g/cm}^3$

What is the mass of 7.3 cm³ of this alloy?
 m = *V*×*d* = (7.3 cm³)×(6.0 g/cm³) = 44 g

Unit conversions (old unit → new unit)

 quantity remains the same; units change
 new unit = (old unit) × (conversion factor)
 conversion factor = (new unit)/(old unit)
 new unit = old unit × [new unit / old unit]
 the old units cancel

Example:

• Convert **5.13 inches** in **centimeters**.

Example:

• Two cities are **250 mi** apart. What is this distance in **km**?

1 km = 0.6214 mi

250 mi ×[1 km/0.6214 mi] = 402 km

Example:

- Convert the density of gold, **19.3 g/cm³**, to **kg/m³**.
- $\Rightarrow need to convert both the numerator and denominator g \rightarrow kg \quad and \quad cm^3 \rightarrow m^3$

 $1 \text{ kg} = 10^3 \text{ g}$

 $1 \text{ cm} = 10^{-2} \text{ m} \implies 1 \text{ cm}^3 = (10^{-2})^3 \text{ m}^3 = 10^{-6} \text{ m}^3$

19.3 g/cm³×[1 kg/10³ g]×[1 cm³/10⁻⁶ m³] =

 $= 19.3 \times 10^3 \text{ kg/m}^3$