2.5 Temperature

- The Celsius scale
$-0^{\circ} \mathrm{C} \rightarrow$ freezing point of water
$-100^{\circ} \mathrm{C} \rightarrow$ boiling point of water
- The Fahrenheit scale
$-0^{\circ} \mathrm{F} \rightarrow$ freezing point of salt/water mixture
$-100^{\circ} \mathrm{F} \rightarrow$ body temperature
- water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$
$\Rightarrow 100$ Celsius degrees $\leftrightarrow 180$ Fahrenheit degrees
- The Kelvin scale - absolute temperature scale
$-0 \mathrm{~K} \rightarrow$ lowest possible temperature
$-0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
- same size of the graduation as Celsius
\Rightarrow water freezes at 273.15 K and boils at 373.15 K
- $T \mathrm{~K}=\boldsymbol{T}^{\circ} \mathrm{C}+273.15$
- $T^{\circ} \mathrm{C}=T \mathrm{~K}-273.15$

Example:

- Convert $-40^{\circ} \mathrm{F}$ in ${ }^{\circ} \mathrm{C}$ and K .
- $T^{\circ} \mathrm{C}=\left(5^{\circ} \mathrm{C} / 9^{\circ} \mathrm{F}\right) \times\left[-40^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right]=$ $=(5 / 9) \times(-72)^{\circ} \mathrm{C}=-40^{\circ} \mathrm{C}$
- $T \mathrm{~K}=-40^{\circ} \mathrm{C}+273.15=233 \mathrm{~K}$

2.6 Uncertainty of Measurements

- Represents the reliability of measurements
- Reported as: number \pm uncertainty $(4.88 \pm 0.05 \mathrm{~kg})$
- If not reported: assume $\pm \mathbf{1}$ in the last reported digit ($3.7 \mathrm{~cm} \rightarrow 3.7 \pm 0.1 \mathrm{~cm}$)
- Exact numbers - no uncertainty (5 tables, 10 apples, $1 \mathrm{~min}=60 \mathrm{~s}, 1 \mathrm{in}=2.54 \mathrm{~cm}$)
- Significant figures - digits of a number known with some degree of certainty
- all non-zero digits
- all zeros after the first non-zero digit
- exception - trailing zeros in numbers without decimal point are not significant

Examples:

$$
1.32 \rightarrow 3 \mathrm{sf}
$$

$$
0.005030 \rightarrow 4 \mathrm{sf}
$$

$$
4500 \rightarrow 2 \mathrm{sf}
$$

$$
\text { 4500. } \rightarrow 4 \text { sf }
$$

- Scientific notation - representation in the form $\rightarrow A \times \mathbf{1 0}^{\mathbf{a}}$
- \boldsymbol{A} - decimal number between 1 and 10
- a - positive or negative integer
- Examples:
$0.00134=1.34 \times 10^{-3}$
$134=1.34 \times 10^{2}$
- all digits in \boldsymbol{A} are significant

Table 2.4 Examples of significant figures
Decimal notation Scientific notation

	Number of sf	
0.751	7.51×10^{-1}	3
0.00751	7.51×10^{-3}	3
0.07051	7.051×10^{-2}	4
0.750100	7.50100×10^{-1}	6
7.5010	7.5010	5
7501	7.501×10^{2}	4
7500	7.5×10^{3}	2^{*}
7500	7.500×10^{3}	4

*In this text, treat trailing zeros as insignificant unless they are followed by a decimal point or other information is given. sf, significant figure.

- Significant figures in calculations
- rounding off (only at the end of a calculation)
- round up, if next digit is above 5
- round down, if next digit is below 5
- round to the nearest even number, if next digit is equal to 5 and it is the last digit in the number (if 5 is not the last digit, round up)
Examples: Round to 3 sf.
$\mathbf{3 . 7 6 4 3} \rightarrow \mathbf{3 . 7 6}$
$\mathbf{3 . 7 6 8 3} \rightarrow \mathbf{3 . 7 7}$
$3.7653 \rightarrow 3.77$
$3.765 \rightarrow 3.76$
- Addition and subtraction
- the number of decimal places in the result is the same as the smallest number of decimal places in the data

Fig. 2.9

- Multiplication and division
- the number of significant figures in the result is the same as the smallest number of significant figures in the data

Division

Examples:

$\mathbf{0 . 0 3 5 4}+\mathbf{1 2 . 1}=\mathbf{1 2 . 1} \leftarrow \mathbf{(1 2 . 1 3 5 4})$
$5.7 \times 0.0651=0.37 \leftarrow(0.37107)$
5.7/0.0651 $=88 \leftarrow(\mathbf{8 7 . 5 5 7 6 0 3 6 9})$
$3.568 \mathrm{in} \times(2.54 \mathrm{~cm} / 1 \mathrm{in})=9.063 \mathrm{~cm}$

2.7 Accuracy and Precision

- Precision - agreement among repeated measurements
- random error - deviation from the average in a series of repeated measurements
- small random error \leftrightarrow high precision
- high precision \leftrightarrow more sf in the result

Example:

- A car is moving at exactly $\mathbf{6 0 ~ m i} / \mathbf{h r}$. Compare the precision and accuracy of the following two series of speed measurements using two different radars.

$$
\begin{aligned}
& A \rightarrow 61.5,58.3,62.7,63.5,57.1 \text { (average 60.6) } \\
& B \rightarrow 62.0,62.5,61.8,62.2,62.1 \text { (average 62.1) }
\end{aligned}
$$

$\mathrm{A} \rightarrow$ more accurate, less precise
B \rightarrow less accurate, more precise

