

• The Kelvin scale - absolute temperature scale $-0 \text{ K} \rightarrow$ lowest possible temperature

 $-0 \text{ K} = -273.15^{\circ}\text{C}$

- same size of the graduation as Celsius
- \Rightarrow water freezes at 273.15 K and boils at 373.15 K
- $T K = T^{\circ}C + 273.15$
- $T^{\circ}C = T K 273.15$

Example:

- Convert -40°F in °C and K.
- T°C = (5°C/9°F)×[-40°F 32°F] = = (5/9)×(-72)°C = -40°C
- $T \text{ K} = -40^{\circ}\text{C} + 273.15 = 233 \text{ K}$

2.6 Uncertainty of Measurements

- Represents the reliability of measurements
- Reported as: number ± uncertainty (4.88 ± 0.05 kg)
- If not reported: assume ±1 in the last reported digit (3.7 cm → 3.7 ± 0.1 cm)
- Exact numbers no uncertainty (5 tables, 10 apples, 1 min = 60 s, 1 in = 2.54 cm)

- Significant figures digits of a number known with some degree of certainty
 - all non-zero digits
- all zeros after the first non-zero digit
- exception trailing zeros in numbers without decimal point are not significant

Examples:

- $1.32 \rightarrow 3 \text{ sf}$
- $0.005030 \rightarrow 4 \text{ sf}$
- $4500 \rightarrow 2 \text{ sf}$
- $4500. \rightarrow 4 \text{ sf}$

- -A decimal number between 1 and 10
- $-\mathbf{a}$ positive or negative integer
- Examples: 0.00134 = 1.34×10⁻³

$$134 = 1.34 \times 10^2$$

– all digits in **A** are significant

Decimal notation	Scientific notation	Number of s
0.751	7.51×10^{-1}	3
0.007 51	7.51×10^{-3}	3
0.070 51	7.051×10^{-2}	4
0.750 100	$7.501\ 00\ imes\ 10^{-1}$	6
7.5010	7.5010	5
7501	7.501×10^{2}	4
7500	7.5×10^{3}	2*
7500.	7.500×10^{3}	4

- Significant figures in calculations
 - rounding off (only at the end of a calculation)
 - round up, if next digit is **above 5**
 - round down, if next digit is below 5
 - round to the nearest even number, if next digit is **equal to 5** and it is the last digit in the number (if 5 is not the last digit, round up)

Examples: Round to 3 sf.

$3.7643 \rightarrow 3.76$

- $\begin{array}{c} 3.7683 \rightarrow 3.77 \\ 3.7653 \rightarrow 3.77 \end{array}$
- $\textbf{3.765} \rightarrow \textbf{3.76}$

- · Addition and subtraction
 - the number of decimal places in the result is the same as the smallest number of decimal places in the data

Examples:

 $0.0354 + 12.1 = 12.1 \leftarrow (12.1354)$

$$5.7 \times 0.0651 = 0.37 \leftarrow (0.37107)$$

$$\textbf{5.7/0.0651} = \textbf{88} \leftarrow (\textbf{87.55760369})$$

3.568 in × (2.54 cm/1 in) = 9.063 cm

2.7 Accuracy and Precision

- Precision agreement among repeated measurements
 - random error deviation from the average in a series of repeated measurements
 - small random error \leftrightarrow high precision
 - high precision \leftrightarrow more sf in the result

- Accuracy agreement of a measurement with the true or accepted value
 - systematic error deviation of the average from the true value (present in the whole set of measurements)
 - small systematic error \leftrightarrow high accuracy

Example:

- A car is moving at exactly **60 mi/hr**. Compare the precision and accuracy of the following two series of speed measurements using two different radars.
 - $\begin{array}{l} A \rightarrow 61.5, 58.3, 62.7, 63.5, 57.1 \ (average \ 60.6) \\ B \rightarrow 62.0, 62.5, 61.8, 62.2, 62.1 \ (average \ 62.1) \end{array}$
 - $A \rightarrow$ more accurate, less precise
 - $B \rightarrow less$ accurate, more precise