

- The Avogadro constant $\left(N_{A}\right)$ - \# of entities per mol
$6.0221 \times 10^{23} / \mathrm{mol}$
- Conversion between moles and entities
[$1 \mathbf{~ m o l}$ entities $/ 6.0221 \times 10^{23}$ entities]

Example: How many atoms of hydrogen are present in 2.7 mol of water.
$2.7 \mathrm{~mol} \mathrm{H} \mathrm{O} \times\left(\frac{6.0221 \times 10^{23} \mathrm{molec} . \mathrm{HO}}{1 \mathrm{~mol} \mathrm{H} \mathrm{O}}\right) \times\left(\frac{2 \text { atoms } \mathrm{H}}{1 \text { molec. } \mathrm{HO} \mathrm{O}}\right)=3.3 \times 10^{24}$ atoms H

- Naturally occurring elements are mixtures of isotopes
- molar masses of isotopes \leftarrow mass spectrometry
- average molar masses of elements

Example: Calculate the average atomic mass of Cu , given that it naturally occurs as $69.17 \%{ }^{63} \mathrm{Cu}$ $(M=62.94 \mathrm{~g} / \mathrm{mol})$ and $30.83 \%{ }^{65} \mathrm{Cu}(M=64.93 \mathrm{~g} / \mathrm{mol})$.
$0.6917 \times 62.94 \mathrm{~g} / \mathrm{mol}+0.3083 \times 64.93 \mathrm{~g} / \mathrm{mol}=$ $=63.55 \mathrm{~g} / \mathrm{mol}$

Chemical Amounts

2.8 The Mole

- Unit for amount of substance in terms of the number of entities (atoms, molecules, ...) in it.
- $1 \mathbf{~ m o l}$ of entities \rightarrow \# of atoms in 12 g of ${ }^{12} \mathrm{C}$
-1 atom of ${ }^{12} \mathrm{C} \rightarrow 1.99265 \times 10^{-23} \mathrm{~g}^{12} \mathrm{C}$ (mass spectrometry)
$-12 \mathrm{~g}^{12} \mathrm{C} \times\left[1\right.$ atom $\left./ 1.99265 \times 10^{-23} \mathrm{~g}^{12} \mathrm{C}\right]=$ $=6.0221 \times 10^{23}$ atoms
$\Rightarrow \mathbf{1} \mathbf{~ m o l}$ of entities $\boldsymbol{\rightarrow} \mathbf{6 . 0 2 2 1} \times 10^{\mathbf{2 3}}$ entities

2.9 Molar Mass (M)

- Mass of a substance per 1 mol of its particles - element \rightarrow atoms
- molecular compound \rightarrow molecules
- ionic compound \rightarrow formula units
- $M=m_{\text {particle }} \times N_{A}$

Example: What is the molar mass of ${ }^{1} \mathrm{H}$, if the mass of 1 atom ${ }^{1} \mathrm{H}$ is $1.673 \times 10^{-24} \mathrm{~g}$?
$M=1.673 \times 10^{-24} \mathrm{~g} \times 6.022 \times 10^{23} / \mathrm{mol}=1.007 \mathrm{~g} / \mathrm{mol}$

Example: What is the mass of 1.221 mol Kr ? $m=1.221 \mathbf{~ m o l} \times \mathbf{8 3 . 8 0} \mathrm{g} / \mathrm{mol}=102.3 \mathrm{~g}$

- \boldsymbol{M} can be used as a conversion factor Example: How many moles of atoms are present in 1.23 g of Kr ?
$1.23 \mathrm{~g} \mathrm{Kr} \times\left(\frac{1 \mathrm{~mol} \mathrm{Kr}}{83.80 \mathrm{~g} \mathrm{Kr}}\right)=1.47 \times 10^{-2} \mathrm{~mol} \mathrm{Kr}$

- Conversion between moles (\boldsymbol{n}) and masses (\boldsymbol{m}) of compounds (same as for elements)

Example: Calculate the number of moles of urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$, in $2.3 \times 10^{5} \mathrm{~kg}$ of this compound.
$M=2 \times 14.00+4 \times 1.008+1 \times 12.01+1 \times 16.00=$ $=\mathbf{6 0 . 0 4} \mathrm{g} / \mathrm{mol}$
$2.3 \times 10^{5} \mathrm{~kg}$ urea $\times\left(\frac{10^{3} \mathrm{~g} \text { urea }}{1 \mathrm{~kg} \text { urea }}\right) \times\left(\frac{1 \text { mol urea }}{60.04 \mathrm{~g} \text { urea }}\right)=3.8 \times 10^{6} \mathrm{~mol}$ urea

