

Determination of Chemical Formulas

- molecular formulas numbers of atoms of each element in a molecule
- empirical formulas relative numbers of atoms of each element using the smallest whole numbers

Example:

acetic acid $\rightarrow C_2H_4O_2 (MF) \rightarrow CH_2O (EF)$ formaldehyde $\rightarrow CH_2O (MF) \rightarrow CH_2O (EF)$ glucose $\rightarrow C_6H_{12}O_6 (MF) \rightarrow CH_2O (EF)$

• Conversion between masses of compounds and masses of their elements using chem. formulas **Example:** What is the mass of H in 5.00 g CH₄? CH₄ \rightarrow $M = 1 \times 12.01 + 4 \times 1.008 = 16.04$ g/mol H \rightarrow M = 1.008 g/mol 5.00 g CH₄ $\times \left(\frac{1 \mod CH_4}{16.04 \text{ g CH}_4}\right) \times \left(\frac{4 \mod H}{1 \mod CH_4}\right) \times \left(\frac{1.008 \text{ g H}}{1 \mod H}\right) = 1.26 \text{ g H}$

2.11 Mass Percentage Composition

- Percentage by mass of each element in a compound
- Mass% = $[m_{element}/m_{compound}] \times 100\%$

- Calculation of Mass% from chemical analysis
- **Example:** Calculate the mass percentage of C in nicotine, if analysis shows that 5.00 g of nicotine contain 3.70 g C, 0.44 g H and 0.86 g N.

Mass% C =
$$\left(\frac{3.70 \text{ g C}}{5.00 \text{ g nicotine}}\right) \times 100\% = 74.0\%$$

• Calculation of Mass% from chemical formulas
Example: Calculate the Mass% of O in CO₂.
CO₂
$$\rightarrow$$
 $M = 1 \times 12.01 + 2 \times 16.00 = 44.01 g/mol$
 $O \rightarrow M = 16.00 g/mol$
Consider: 1 mol CO₂ \rightarrow contains 2 mol O
 \rightarrow mass of 1 mol CO₂ = 44.01 g CO₂
 \rightarrow mass of 2 mol O = 2 mol O×[16.00 g O/1 mol O]=
= 32.00 g O
Mass% O = $\left(\frac{32.00 \text{ g O}}{44.01 \text{ g CO}_2}\right) \times 100\% = 72.71\%$

2.12 Determining Empirical Formulas

- The relative number of atoms of each element is the same as the relative number of moles of each element in a compound
- EF from Mass% data
 - consider 100 g of the compound
 - the masses of the elements equal their mass%
 - convert the masses of the elements to moles
 - determine the relative number of moles (mole ratio)
 - simplify the mole ratio to whole numbers

Example:

- Determine the EF of nicotine, if the mass% of C, H and N in it are 74.0, 8.7 and 17.3 %, respectively.
- \rightarrow consider 100 g nicotine
- ${\rightarrow}74.0~g$ C, ~8.7~g H, ~17.3~g N
- \rightarrow convert masses to moles:
 - 74.0 g C×(1 mol C/12.01 g C) = 6.16 mol C
 - 8.7 g H×(1 mol H/1.008 g H) = 8.6 mol H
 - 17.3 g N×(1 mol N/14.01 g N) = 1.23 mol N

 $\label{eq:constraint} \begin{array}{l} \rightarrow mol \ ratio: \\ 6.16 \ mol \ C : 8.6 \ mol \ H : 1.23 \ mol \ N \\ \rightarrow simplify \ the \ mole \ ratio: \\ 6.16/1.23 = 5.01 \cong 5 \\ 8.6/1.23 = 7.0 \cong 7 \\ 1.23/1.23 = 1.00 \cong 1 \\ \rightarrow simplest \ whole-number \ ratio: \\ 5 \ mol \ C : 7 \ mol \ H : 1 \ mol \ N \\ \rightarrow EF: \\ \hline C_5H_7N \end{array}$

2.13 Determining Molecular Formulas

- The MF is a whole-number multiple of the EF
 - $\Rightarrow M = M_{EF} \times \mathbf{n}$
 - $-M \rightarrow \text{molar mass}$ $-M_{EF} \rightarrow \text{EF mass}$
 - $-\mathbf{n} \rightarrow$ whole number (number of EFs per molecule)

 \Rightarrow n = *M*/*M*_{EF}

• Determining MFs from EFs and molar masses

Example:

• The empirical formula of nicotine is C_5H_7N and its molar mass is 162.23 g/mol. MF = ? $M_{EF} \rightarrow 5\times12.01+7\times1.008+1\times14.01 = 81.12$ g/mol

$$n = \frac{M}{M_{EF}} = \frac{162.23 \text{ g/mol}}{81.12 \text{ g/mol}} = 2.000 \cong 2$$

 \Rightarrow MF = 2 × EF

$$MF \rightarrow C_{10}H_{14}N_2$$

Assignments:

- Homework: Chpt. 2/3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 33, 35, 43, 47, 49, 51, 57, 61, 65, 69, 71, 73, 99.
- Student Companion: 2.1, 2.2, 2.3