

- Conversion between masses of compounds and masses of their elements using chem. formulas
Example: What is the mass of H in 5.00 g CH_{4} ?
$\mathrm{CH}_{4} \rightarrow M=1 \times 12.01+4 \times 1.008=16.04 \mathrm{~g} / \mathrm{mol}$ $\mathrm{H} \rightarrow M=1.008 \mathrm{~g} / \mathrm{mol}$
$5.00 \mathrm{~g} \mathrm{CH}_{4} \times\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}\right) \times\left(\frac{4 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{CH}_{4}}}{1 \mathrm{~m}^{2}}\right) \times$ $\times\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)=1.26 \mathrm{~g} \mathrm{H}$

Determination of Chemical Formulas

- molecular formulas - numbers of atoms of each element in a molecule
- empirical formulas - relative numbers of atoms of each element using the smallest whole numbers

Example:

acetic acid $\rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{MF}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{EF})$
formaldehyde $\rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{MF}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{EF})$
glucose $\rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{MF}) \rightarrow \mathrm{CH}_{2} \mathrm{O}$ (EF)

2.11 Mass Percentage Composition

- Percentage by mass of each element in a compound
- Mass\% $=\left[\mathrm{m}_{\text {element }} / \mathrm{m}_{\text {compound }}\right] \times 100 \%$
- Calculation of Mass\% from chemical formulas

Example: Calculate the Mass\% of O in CO_{2}. $\mathrm{CO}_{2} \rightarrow M=1 \times 12.01+\mathbf{2 \times 1 6 . 0 0}=\mathbf{4 4 . 0 1} \mathrm{g} / \mathrm{mol}$ $\mathrm{O} \rightarrow M=16.00 \mathrm{~g} / \mathrm{mol}$
Consider: 1 mol CO $\mathbf{2 l}^{\rightarrow}$ contains 2 mol O
\rightarrow mass of $1 \mathrm{~mol} \mathrm{CO}_{2}=44.01 \mathrm{~g} \mathrm{CO}_{2}$
\rightarrow mass of $2 \mathrm{~mol} O=2 \mathrm{~mol} O \times[16.00 \mathrm{~g} \mathrm{O} / 1 \mathrm{~mol} \mathrm{O}]=$ $=32.00 \mathrm{~g} \mathrm{O}$

Mass $\% \mathrm{O}=\left(\frac{32.00 \mathrm{~g} \mathrm{O}^{44.01 \mathrm{~g} \mathrm{CO}_{2}}}{4400 \%=72.71 \%}\right.$

2.12 Determining Empirical Formulas

- The relative number of atoms of each element is the same as the relative number of moles of each element in a compound
- EF from Mass\% data
- consider 100 g of the compound
- the masses of the elements equal their mass \%
- convert the masses of the elements to moles
- determine the relative number of moles (mole ratio)
- simplify the mole ratio to whole numbers

Example:

- Determine the EF of nicotine, if the mass\% of C, H and N in it are 74.0, 8.7 and 17.3%, respectively.
\rightarrow consider 100 g nicotine
$\rightarrow 74.0 \mathrm{~g} \mathrm{C}, 8.7 \mathrm{~g} \mathrm{H}, 17.3 \mathrm{~g} \mathrm{~N}$
\rightarrow convert masses to moles:
$74.0 \mathrm{~g} \mathrm{C} \times(1 \mathrm{~mol} \mathrm{C} / 12.01 \mathrm{~g} \mathrm{C})=6.16 \mathrm{~mol} \mathrm{C}$
$8.7 \mathrm{~g} \mathrm{H} \times(1 \mathrm{~mol} \mathrm{H} / 1.008 \mathrm{~g} \mathrm{H})=8.6 \mathrm{~mol} \mathrm{H}$
$17.3 \mathrm{~g} \mathrm{~N} \times(1 \mathbf{~ m o l ~ N} / 14.01 \mathrm{~g} \mathrm{~N})=1.23 \mathbf{~ m o l ~ N}$
\rightarrow mol ratio:
$\mathbf{6 . 1 6} \mathbf{~ m o l ~ C ~ : ~} \mathbf{8 . 6} \mathbf{~ m o l ~ H} \boldsymbol{:} \mathbf{1 . 2 3} \mathbf{~ m o l ~ N}$
\rightarrow simplify the mole ratio:
$6.16 / 1.23=5.01 \cong 5$
$8.6 / 1.23=7.0 \cong 7$
$1.23 / 1.23=1.00 \cong 1$
\rightarrow simplest whole-number ratio:
$5 \mathrm{~mol} \mathrm{C} \mathrm{:} \mathbf{7} \mathbf{~ m o l ~ H}: \mathbf{1} \mathbf{~ m o l ~ N}$
\rightarrow EF:

$$
\mathrm{C}_{5} \mathbf{H}_{7} \mathbf{N}
$$

Example:

- The empirical formula of nicotine is $\mathbf{C}_{\mathbf{5}} \mathbf{H}_{7} \mathbf{N}$ and its molar mass is $162.23 \mathrm{~g} / \mathrm{mol} . \mathrm{MF}=$?

$$
M_{E F} \rightarrow 5 \times 12.01+7 \times 1.008+1 \times 14.01=81.12 \mathrm{~g} / \mathrm{mol}
$$

$$
\mathrm{n}=\frac{M}{M_{E F}}=\frac{162.23 \mathrm{~g} / \mathrm{mol}}{81.12 \mathrm{~g} / \mathrm{mol}}=2.000 \cong 2
$$

$$
\Rightarrow \mathbf{M F}=2 \times \mathbf{E F}
$$

$$
M F \rightarrow \mathrm{C}_{10} \mathbf{H}_{14} \mathbf{N}_{2}
$$

2.13 Determining Molecular Formulas

- The MF is a whole-number multiple of the EF

$$
\Rightarrow M=M_{E F} \times \mathbf{n}
$$

- $\boldsymbol{M} \rightarrow$ molar mass
$-\boldsymbol{M}_{E F} \rightarrow$ EF mass
$-\mathbf{n} \rightarrow$ whole number (number of EFs per molecule)

$$
\Rightarrow \mathbf{n}=M / M_{E F}
$$

- Determining MFs from EFs and molar masses

Assignments:

- Homework: Chpt. 2/3, 5, 9, 11, 13, 15, 17, $19,23,25,29,31,33,35,43,47,49,51,57$, 61, 65, 69, 71, 73, 99.
- Student Companion: 2.1, 2.2, 2.3

