

## **Chemical Reactions**

- chemical changes (chemical reactions)
- reactants and products

### **3.1 Chemical Equations**

#### **Reactants** $\rightarrow$ **Products**

· Skeletal equations - show identities of reactants and products

$$H_2 + O_2 \rightarrow H_2O$$

- · Law of conservation of mass
  - atoms are neither created nor destroyed (they only change bonding partners)
  - same atoms are present in reactants as in products
- Balanced chemical equations
  - same number of atoms of each element appear on each side of the equation
  - stoichiometric coefficients needed to balance the equations

```
2H_2 + O_2 \rightarrow 2H_2O (2 mol H_2 react with 1 mol O_2 to form 2 mol H_2O)
```



- the stoichiometric coefficients can be treated as relative number of moles of reactants and products
- physical state symbols

• (s) solid; (l) liquid; (g) gas; (aq) aqueous solution

$$2\mathbf{K}(\mathbf{s}) + 2\mathbf{H}_2\mathbf{O}(\mathbf{l}) \rightarrow 2\mathbf{KOH}(\mathbf{aq}) + \mathbf{H}_2(\mathbf{g})$$

#### **3.2 Balancing Chemical Equations**

- Balancing by inspection (only simple cases) - change stoichiometric coefficients
  - never change subscripts of formulas

- · Systematic method
  - balance one element at a time using coefficients
  - start with the element present in the fewest number of formulas and finish with the element present in the greatest number of formulas
  - use fractional coefficients if necessary
  - if necessary multiply the whole equation by a number to clear the fractional coefficients
  - verify that the coefficients are the smallest whole numbers
  - specify physical states



**Example:** Write the balanced equation for the combustion of ethane,  $C_2H_6$ , to carbon dioxide and liquid water.

$$\begin{split} C_2H_6 + O_2 &\rightarrow CO_2 + H_2O \qquad \text{skeletal} \\ C_2H_6 + O_2 &\rightarrow 2CO_2 + H_2O \qquad \text{for } C \\ C_2H_6 + O_2 &\rightarrow 2CO_2 + 3H_2O \qquad \text{for } H \\ C_2H_6 + (7/2)O_2 &\rightarrow 2CO_2 + 3H_2O \qquad \text{for } O \\ \text{multiply eq. by } 2 \\ 2C_2H_6 + 7O_2 &\rightarrow 4CO_2 + 6H_2O \\ 2C_2H_6(g) + 7O_2(g) &\rightarrow 4CO_2(g) + 6H_2O(l) \end{split}$$

- Often polyatomic ions can be treated as single entities **Example:** Balance the following skeletal eq. in aqueous solution:  $Co(NO_3)_3 + (NH_4)_2S \rightarrow$   $Co_2S_3 + NH_4NO_3$   $\rightarrow$  balance Co and S:  $2Co(NO_3)_3 + 3(NH_4)_2S \rightarrow Co_2S_3 + NH_4NO_3$   $\rightarrow$  balance NH<sub>4</sub> and NO<sub>3</sub>:  $2Co(NO_3)_3 + 3(NH_4)_2S \rightarrow Co_2S_3 + 6NH_4NO_3$   $\rightarrow$  add physical state symbols:  $2Co(NO_3)_3(aq) + 3(NH_4)_2S(aq) \rightarrow Co_2S_3(s) + 6NH_4NO_3(aq)$ 



#### **3.3 Aqueous Solutions**

- Soluble and insoluble substances
- Concentration of solutions amount of solute per unit volume
- Electrolytes produce ions in solution (resulting solution conducts electricity)
  - strong electrolytes completely ionize in solution (soluble salts, strong acids and bases such as NaCl, HCl, KOH, ...)
  - weak electrolytes partially ionize in solution (weak acids and bases such as  $H_2S$ ,  $NH_3$ , ...)



# 3.4 Reactions between Strong Electrolyte Solutions Hydration (solvation) of ions in solution - ions

are surrounded by water (solvent) molecules

Fig. 3.13

• Precipitation reaction - formation of an insoluble product after mixing of two electrolyte solutions

 $\begin{array}{ll} AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq) \\ \text{solution} & \text{solution} & \text{precipitate solution} \end{array}$