

1.1 Fundamental Definitions

- Changes of matter

- Physical - changes in the physical form of matter, but not in its chemical identity (e.g., boiling, melting, mixing, diluting, ...)
- Chemical - changes in the chemical identity of matter (e.g., chemical reactions such as rusting of Fe , burning of gasoline, digestion of food, ...)

Keys to the Study of Chemistry

- Chemistry is the study of matter, its properties, changes, and the energy associated with these changes
- Matter is everything that has mass an occupies space
- Pure substances
- Mixtures

- Properties of matter

- Physical - characteristics of matter that can be observed without changing its chemical identity (e.g., mass, density, color, physical state, ...)
- Chemical - characteristics of matter related to its chemical change (e.g., hydrogen is a flammable gas that burns in the presence of O_{2} to produce $\mathrm{H}_{2} \mathrm{O}$)
- A substance is identified by its own set of physical and chemical properties

- Physical states of matter

- Solid - a rigid form of matter with definite volume and shape
- Liquid - a fluid form of matter with definite volume but not shape
- Gas - a fluid form of matter with no definite volume or shape (no surface)
- In general, changes in the physical state are reversible and can be achieved by changing temperature and pressure

- Macroscopic and microscopic

 properties and events- Macroscopic - observable properties and events of large visible objects
- Microscopic - result from changes at a much smaller (atomic) level not visible by the naked eye
- Macroscopic properties and events occur as a result of microscopic properties and events

Examples:

- Define the following as physical or chemical properties or changes:
- A stove becomes red-hot
- The leafs of a tree turn yellow
- Lead is a dense metal
- Acetone is quite volatile (easily vaporized)
- Iron rusts when exposed to air
- Gasoline is flammable
- Energy - the ability to do work
- Potential energy - due to position or interaction
- Kinetic energy - due to motion
- Total energy - sum of potential and kinetic energy
- Law of conservation of energy - the total energy of an isolated object (or a system of objects) is constant
- Energy is neither created nor destroyed - it is only converted from one form to another

Note: The friction is neglected.

1.3 The Unit Conversion Method

- Units of measurement
- Measurements - quantitative observations
- Units - standards used to compare measurements (yard \rightarrow standard for comparison of length measurements)
- A measured quantity is reported as a number and a unit
$($ Measured quantity $)=$ number \times unit 5.5 seconds $=5.5 \times 1 \mathrm{~s}$

- Units in calculations

- Units are treated just like pure numbers

Area $=4$ in $\times 6$ in $=(4 \times 6)($ in \times in $)=24$ in 2

- Systems of units (metric, English, SI, ...)
- Equalities between units

$$
1 \mathrm{in}=2.54 \mathrm{~cm} \quad 1 \mathrm{mi}=1.609 \mathrm{~km}
$$

- Conversion factors - ratios between two equal or equivalent units (derived from equalities)

$$
\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=1 \quad \text { or } \quad \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=1
$$

Example: Convert 5.13 inches to centimeters.

old unit \rightarrow in \quad new unit \rightarrow cm
$1 \mathrm{in}=2.54 \mathrm{~cm} \rightarrow$ conversion factor $=[2.54 \mathrm{~cm} / 1 \mathrm{in}]$
$5.13 \mathrm{in} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=\frac{5.13 \times 2.54}{1} \times \frac{\mathrm{in} \times \mathrm{cm}}{\text { in }}=13.0 \mathrm{~cm}$

1.4 Measurement in Scientific Study

- Systems of units (metric, English, SI, ...)
- The International System of units (SI)
- Based on the metric system
- SI base units

Table 1.2 SI Base Units

Physical Quantity (Dimension)	Unit Name	Unit Abbreviation
Mass	kilogram	kg
Length	meter	m
Time	second	s
Temperature	kelvin	K
Electric current	ampere	A
Amount of substance	mole	mol
Luminous intensity	candela	cd

- Unit conversions (old unit \rightarrow new unit)
- Quantity remains the same; units change
new unit $=$ old unit \times (conv. factor $)$
conv. factor $=\frac{\text { new unit }}{\text { old unit }}$
new unit $=$ old unit \times
new unit
old unit
- The old units cancel

Example:

- The gas mileage of a car is $\mathbf{3 5} \mathbf{~ m i} / \mathbf{g a l}$.

How many km can the car travel on a full 10 gal tank of gas?
$1 \mathrm{mi}=1.609 \mathrm{~km}$
$10 g a l \times \frac{35 m i}{1 g a l}=350 m i$

$$
350 \mathrm{mi} \times \frac{1.609 \mathrm{~km}}{1 m i^{\prime}}=563 \mathrm{~km}
$$

- Prefixes used with SI units (denote powers of 10)
- Used to express very small or very large quantities Table 1.3 Common Decimal Prefixes Used with SI Units

Prefix*	Prefix Symbol	Meaning		Multiple ${ }^{\dagger}$
		Number	Word	
tera	T	1,000,000,000,000	trillion	10^{12}
giga	G	1,000,000,000	billion	10^{9}
mega	M	1,000,000	million	10^{6}
kilo	k	1,000	thousand	10^{3}
hecto	h	100	hundred	10^{2}
deka	da	10	ten	10^{1}
-	-	1	one	10°
deci	d	0.1	tenth	10^{-1}
centi	c	0.01	hundredth	10^{-2}
milli	m	0.001	thousandth	10^{-3}
micro	μ	0.000001	millionth	10^{-6}
nano	n	0.000000001	billionth	10^{-9}
pico	p	0.000000000001	trillionth	10^{-12}
femto	f	0.000000000000001	quadrillionth	10^{-15}

- Examples:

$1 \mathrm{~mm}=10^{-3} \times(1 \mathrm{~m})=10^{-3} \mathrm{~m}$
$1 \mathrm{MW}=10^{6} \times(1 \mathrm{~W})=10^{6} \mathrm{~W}$
$1 \mu \mathrm{~s}=10^{-6} \times(1 \mathrm{~s})=10^{-6} \mathrm{~s}$
$1 \mathrm{ng}=10^{-9} \times(1 \mathrm{~g})=10^{-9} \mathrm{~g}$

- Mass and weight

- Mass is constant (depends on the amount of matter)
- Weight can vary with the strength of the gravitational field
- Mechanical balances actually measure mass

Example (cont.):

$1.1 \frac{\mathrm{gal}}{\mathrm{s}} \times\left(\frac{3.785 \mathrm{~L}}{1 \mathrm{gal}}\right)=4.2 \frac{\mathrm{~L}}{\mathrm{~s}}$
$1.5 h \times\left(\frac{60 \text { min }}{1 / h}\right) \times\left(\frac{60 s}{1 \text { min }}\right)=5400 s$
$5400 s \times\left(\frac{4.2 L}{1 s}\right)=22000 L$

- Extensive properties - depend on sample
size (mass, volume, length, ...)
- Intensive properties - independent of sample size (density, temperature, color, ...)

Example:

What is the density of an alloy in $\mathrm{g} / \mathrm{cm}^{3}$, if $\mathbf{5 5} \mathbf{g}$ of it displace 9.1 mL of water? $d=m / V=(55 \mathrm{~g}) /(9.1 \mathrm{~mL})=6.0 \mathrm{~g} / \mathrm{mL}=$ $6.0 \mathrm{~g} / \mathrm{cm}^{3}$

Example:

A jet engine consumes $\mathbf{1 . 1} \mathbf{~ g a l}$ of fuel per second. How many liters of fuel does the engine need in order to operate for $\mathbf{1 . 5}$ hours?
$1 \mathrm{gal}=3.785 \mathrm{~L} \quad 1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$
Plan:
$1.1 \mathrm{gal} / \mathrm{s} \rightarrow$? L/s
1.5 Hours \rightarrow ? minutes \rightarrow ? seconds

Seconds $\times \mathrm{L} / \mathrm{s} \rightarrow$? L

- Derived units (derived from the base units)
- Volume $(\boldsymbol{V}) \rightarrow 1 \mathrm{~m}^{3}=(1 \mathrm{~m}) \times(1 \mathrm{~m}) \times(1 \mathrm{~m})$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}=(1 \mathrm{~cm}) \times(1 \mathrm{~cm}) \times(1 \mathrm{~cm})=$
$\left(10^{-2} \mathrm{~m}\right) \times\left(10^{-2} \mathrm{~m}\right) \times\left(10^{-2} \mathrm{~m}\right)=\left(10^{-2} \times 10^{-2} \times 10^{-2}\right) \mathrm{m}^{3}=10^{-6} \mathrm{~m}^{3}$
$1 \mathrm{~L}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3} \quad 1 \mathrm{~mL}=10^{-3} \mathrm{~L}$
- Density (d) \rightarrow mass (m) per unit volume (V) $\rightarrow(d=m / V)$
unit of $d=(1 \mathrm{~kg}) /\left(1 \mathrm{~m}^{3}\right)=1 \mathrm{~kg} / \mathrm{m}^{3}$
- Velocity $(v) \rightarrow$ distance (l) per unit time (t) $\rightarrow(v=l / t)$
unit of $v=(1 \mathrm{~m}) /(1 \mathrm{~s})=1 \mathrm{~m} / \mathrm{s}$

Example:

- Convert the density of gold, $\mathbf{1 9 . 3} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$, to $\mathbf{k g} / \mathbf{m}^{3}$.
\Rightarrow need to convert both the numerator and denominator $\mathrm{g} \rightarrow \mathrm{kg}$ and $\mathrm{cm}^{3} \rightarrow \mathrm{~m}^{3}$ $1 \mathrm{~kg}=10^{3} \mathrm{~g}$ $1 \mathrm{~cm}=10^{-2} \mathrm{~m} \Rightarrow 1 \mathrm{~cm}^{3}=\left(10^{-2}\right)^{3} \mathrm{~m}^{3}=10^{-6} \mathrm{~m}^{3}$
$d=19.3 \frac{g^{\prime}}{\mathrm{cm}^{3}} \times\left(\frac{1 \mathrm{~kg}}{10^{3} g}\right) \times\left(\frac{1 \mathrm{~cm}^{3}}{10^{-6} \mathrm{~m}^{3}}\right)=19.3 \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Example:

What is the mass in $\boldsymbol{k g}$ of a $\mathbf{1 5 f t}$ wire made of an alloy with $\boldsymbol{d}=\mathbf{6 . 0} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$ if the diameter of the wire is $\mathbf{0 . 2 0} \mathbf{~ i n}$?
Plan:
Diameter \rightarrow radius (cm) \rightarrow cross-section area $\left(\mathrm{cm}^{2}\right)$
Length (cm) \times cross-section area \rightarrow volume (cm^{3})
Volume \& density \rightarrow mass (g) \rightarrow mass (kg)
15 ft
0.20 in $\downarrow 0$ \qquad

- Temperature (\boldsymbol{T}) - a measure of how hot or cold an object is relative to other objects
$-T$ reflects the thermal energy of the object
$-T$ is an intensive property
- Heat - the flow of thermal energy between objects
- Heat flows from objects with higher T to objects with lower T
- Heat is an extensive property
- Heat and temperature are different
- Thermometers
- Used to measure T

$$
\begin{array}{rl}
0.20 \mathrm{in} & 15 \mathrm{ft} \\
\text { Radius } \rightarrow r=0.20 \mathrm{in} / 2=0.10 \mathrm{in} \\
r & =0.10 \mathrm{j} \hbar \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{j} / \mathrm{n}}\right)=0.254 \mathrm{~cm} \\
A & =\pi r^{2}=3.14 \times(0.254 \mathrm{~cm})^{2}=0.203 \mathrm{~cm}^{2} \\
l & =15 \mathrm{ff} \times\left(\frac{12 \mathrm{jn}}{1 \mathrm{ft}}\right) \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{jh}}\right)=457 \mathrm{~cm} \\
V & =l \times A=457 \mathrm{~cm} \times 0.203 \mathrm{~cm}^{2}=92.7 \mathrm{~cm}^{3} \\
m & =92.7 \mathrm{~cm}^{3} \times\left(\frac{6.0 g}{1 \mathrm{~cm}^{3}}\right) \times\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)=0.56 \mathrm{~kg}
\end{array}
$$

- The Celsius scale

$-0^{\circ} \mathrm{C} \rightarrow$ freezing point of water
$-100^{\circ} \mathrm{C} \rightarrow$ boiling point of water

- The Fahrenheit scale
$-0^{\circ} \mathrm{F} \rightarrow$ freezing point of salt/water mixture
$-100^{\circ} \mathrm{F} \rightarrow$ body temperature
- water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$
$\Rightarrow 100$ Celsius degrees $\leftrightarrow 180$ Fahrenheit degrees

	$\begin{aligned} & \left(\frac{180^{\circ} \mathrm{F}}{100^{\circ} \mathrm{C}}\right)=\left(\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}\right) \\ & T^{\circ} \mathrm{F}=\left(\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}\right) T^{\circ} \mathrm{C}+32^{\circ} \mathrm{F} \\ & T^{\circ} \mathrm{C}=\left(\frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}\right)\left(T^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right) \end{aligned}$

- The Kelvin scale - absolute temperature scale
$-0 \mathrm{~K} \rightarrow$ lowest possible temperature
$-0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
- same size of degree unit as Celsius \Rightarrow water freezes at 273.15 K and boils at 373.15 K
- $T \mathrm{~K}=T^{\circ} \mathrm{C}+273.15$
- $T^{\circ} \mathrm{C}=T \mathrm{~K}-273.15$

1.5 Uncertainty of Measurements

- Represents the reliability of measurements
- Reported as: number \pm uncertainty $(4.88 \pm 0.05 \mathrm{~kg})$
- If not reported: assume $\pm \mathbf{1}$ in the last reported digit ($3.7 \mathrm{~cm} \rightarrow 3.7 \pm 0.1 \mathrm{~cm}$)
- Exact numbers - no uncertainty (5 tables, 10 apples, $1 \mathrm{~min}=60 \mathrm{~s}, 1 \mathrm{in}=2.54 \mathrm{~cm}$)

Example:

- Convert $-40^{\circ} \mathrm{F}$ in ${ }^{\circ} \mathrm{C}$ and K .
- $T^{\circ} \mathrm{C}=\left(5^{\circ} \mathrm{C} / 9^{\circ} \mathrm{F}\right) \times\left[-40^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right]=$ $=(5 / 9) \times(-72)^{\circ} \mathrm{C}=-40^{\circ} \mathrm{C}$
- $T \mathrm{~K}=\mathbf{- 4 0}{ }^{\circ} \mathrm{C}+273.15=233 \mathrm{~K}$
- Significant figures - digits of a number known with some degree of certainty
- All non-zero digits
- All zeros after the first non-zero digit
- Exception - trailing zeros in numbers without decimal point are not significant
- More significant figures \leftrightarrow less uncertainty Examples:

$$
\begin{aligned}
& 1.32 \rightarrow 3 \mathrm{sf} \\
& 0.005030 \rightarrow 4 \mathrm{sf} \\
& \mathbf{4 5 0 0} \rightarrow 2 \mathrm{sf} \\
& 4500 . \rightarrow 4 \mathrm{sf}
\end{aligned}
$$

- Scientific notation - representation in the form $\rightarrow \boldsymbol{A} \times \mathbf{1 0}^{\boldsymbol{a}}$
$-\boldsymbol{A} \rightarrow$ a decimal number between 1 and 10
$-\boldsymbol{a} \rightarrow$ a positive or negative integer
- Examples:

$$
\begin{aligned}
& 0.00134=1.34 \times 10^{-3} \\
& 134=1.34 \times 10^{2}
\end{aligned}
$$

- all digits in \boldsymbol{A} are significant
- Examples of significant figures

Decimal notation	Scientific notation	Number of sf
0.751	7.51×10^{-1}	3
0.00751	7.51×10^{-3}	3
0.07051	7.051×10^{-2}	4
0.750100	7.50100×10^{-1}	6
7.5010	7.5010	5
7501	7.501×10^{2}	4
7500	7.5×10^{3}	2^{*}
7500	7.500×10^{3}	4

- Significant figures in calculations

- Rounding off (only at the end of a calculation)
- round up, if next digit is above 5
- round down, if next digit is below 5
- round to the nearest even number, if next digit is equal to 5 and it is the last nonzero digit of the number (if 5 is not the last nonzero digit, round up)
Examples: Round to 3 sf .
$3.7643 \rightarrow 3.76$
$3.765 \rightarrow 3.76$
$3.7683 \rightarrow 3.77$
$3.755 \rightarrow 3.76$
$3.7653 \rightarrow 3.77$
$3.765 \rightarrow 3.76$
- Multiplication and division
- the number of significant figures in the result is the same as the smallest number of significant figures in the data

- Precision and accuracy

- Two aspects of uncertainty
- Precision - agreement among repeated measurements
- Random error - deviation from the average in a series of repeated measurements (some values higher, some values lower than the average)
small random error \leftrightarrow high precision high precision \leftrightarrow more sf in the result
- Addition and subtraction
- the number of decimal places in the result is the same as the smallest number of decimal places in the data

Examples:

$\mathbf{0 . 0 3 5 4}+\mathbf{1 2 . 1}=\mathbf{1 2 . 1} \leftarrow \mathbf{(1 2 . 1 3 5 4})$
$\mathbf{5 . 7 \times 0 . 0 6 5 1}=\mathbf{0 . 3 7} \leftarrow \mathbf{(0 . 3 7 1 0 7})$
5.7/0.0651 $=88 \leftarrow(87.55760369)$
$3.568 \mathrm{in} \times(2.54 \mathrm{~cm} / 1 \mathrm{in})=9.063 \mathrm{~cm}$

- Accuracy - agreement of a measurement with the true or accepted value
-Systematic error - deviation of the average from the true value (present in the whole set of measurements - either all high or all low)
small systematic error \leftrightarrow high accuracy
- Instrument calibration - comparison
with a known standard
- Essential for avoiding systematic error

Example:

- A car is moving at exactly $\mathbf{6 0 ~ m i} / \mathrm{hr}$. Compare the precision and accuracy of the following two series of speed measurements using two different radars.

$$
A \rightarrow 61.5,58.3,62.7,63.5,57.1 \text { (average 60.6) }
$$

$\mathrm{B} \rightarrow \mathbf{6 2 . 0}, 62.5,61.8,62.2,62.1$ (average 62.1)
$\mathrm{A} \rightarrow$ more accurate, less precise
B \rightarrow less accurate, more precise

