

Keys to the Study of Chemistry

- **Chemistry** is the study of matter, its properties, changes, and the energy associated with these changes
- **Matter** is everything that has mass an occupies space
 - Pure substances
 - Mixtures

1.1 Fundamental Definitions

- Changes of matter
 - Physical changes in the physical form of matter, but not in its chemical identity (e.g., boiling, melting, mixing, diluting, ...)
 - **Chemical** changes in the chemical identity of matter (e.g., chemical reactions such as rusting of Fe, burning of gasoline, digestion of food, ...)

Properties of matter

- Physical characteristics of matter that can be observed <u>without</u> changing its chemical identity (e.g., mass, density, color, physical state, ...)
- **Chemical** characteristics of matter related to its chemical change (e.g., hydrogen is a <u>flammable</u> gas that <u>burns</u> in the presence of O_2 to produce H_2O)
- A substance is identified by its own set of physical and chemical properties

• Physical states of matter

- **Solid** a rigid form of matter with definite volume and shape
- Liquid a fluid form of matter with definite volume but not shape
- **Gas** a fluid form of matter with no definite volume or shape (no surface)
- In general, changes in the physical state are reversible and can be achieved by changing temperature and pressure

- Macroscopic and microscopic properties and events
 - **Macroscopic** observable properties and events of large visible objects
 - Microscopic result from changes at a much smaller (atomic) level not visible by the naked eye
- Macroscopic properties and events occur as a result of microscopic properties and events

Examples:

- Define the following as physical or chemical properties or changes:
 - A stove becomes red-hot
 - The leafs of a tree turn yellow
 - Lead is a dense metal
 - Acetone is quite volatile (easily vaporized)
 - Iron rusts when exposed to air
 - Gasoline is flammable

- Energy the ability to do work
 - **Potential energy** due to position or interaction
 - Kinetic energy due to motion
 - Total energy sum of potential and kinetic energy
- Law of **conservation of energy** the total energy of an isolated object (or a system of objects) is constant
 - Energy is neither created nor destroyed it is only converted from one form to another

1.3 The Unit Conversion Method Units of measurement Measurements – quantitative observations Units – standards used to compare measurements (yard → standard for comparison of length measurements) A measured quantity is reported as a number and a unit

(Measured quantity) = number × unit

5.5 seconds = 5.5×1 s

 $\frac{1 in}{2.54 cm} = 1$ or $\frac{2.54 cm}{1 in} = 1$

Example:

• The gas mileage of a car is **35 mi/gal**. How many **km** can the car travel on a full **10 gal** tank of gas?

1 mi = 1.609 km
10 gal ×
$$\frac{35 mi}{1 gal}$$
 = 350 mi
350 mi × $\frac{1.609 km}{1 mi}$ = 563 km

 Systems of units (1 The International 3 Based on the metr SI base units 	metric, Englis System of un ic system	sh, SI,) its (SI)
Table 1.2 SI Base Units		
Physical Quantity (Dimension)	Unit Name	Unit Abbreviation
Mass	kilogram	kg
Length	meter	m
Time	second	S
Temperature	kelvin	K
Electric current	ampere	A
Amount of substance	mole	mol
Luminous intensity	candela	cd

1.4 Measurement in Scientific Study

Prefixes used with SI units (denote powers of 10)
 Used to express very small or very large quantities

Table 1.3 Common Decimal Prefixes Used with SI Units

	Prefix Symbol	Meaning		
Prefix*		Number	Word	Multiple ⁺
tera	Т	1,000,000,000,000	trillion	1012
giga	G	1,000,000,000	billion	10^{9}
mega	М	1,000,000	million	10^{6}
kilo	k	1,000	thousand	10^{3}
hecto	h	100	hundred	10^{2}
deka	da	10	ten	10^{1}
		1	one	10^{0}
deci	d	0.1	tenth	10^{-1}
centi	с	0.01	hundredth	10^{-2}
milli	m	0.001	thousandth	10^{-3}
micro	μ	0.000001	millionth	10^{-6}
nano	n	0.00000001	billionth	10^{-9}
pico	p	0.00000000001	trillionth	10^{-12}
femto	f	0.000000000000001	quadrillionth	10^{-15}

Examples: 1 mm = 10⁻³ × (1 m) = 10⁻³ m 1 MW = 10⁶ × (1 W) = 10⁶ W 1 μs = 10⁻⁶ × (1 s) = 10⁻⁶ s 1 ng = 10⁻⁹ × (1 g) = 10⁻⁹ g Mass and weight - Mass is constant (depends on the amount of matter) - Weight can vary with the strength of the gravitational field

- Mechanical balances actually measure mass

Example:

A jet engine consumes **1.1 gal** of fuel per second. How many **liters** of fuel does the engine need in order to operate for **1.5 hours**?

1 gal = 3.785 L 1 h = 60 min = 3600 s

Plan:

1.1 gal/s \rightarrow ? L/s 1.5 Hours \rightarrow ? minutes \rightarrow ? seconds Seconds × L/s \rightarrow ? L

Example (cont.):

$$1.1 \frac{gal}{s} \times \left(\frac{3.785 L}{1 gal}\right) = 4.2 \frac{L}{s}$$

$$1.5 h \times \left(\frac{60 min}{1 h}\right) \times \left(\frac{60 s}{1 min}\right) = 5400 s$$

$$5400 s \times \left(\frac{4.2 L}{1 s}\right) = 22000 L$$

• Derived units (derived from the base units) - Volume $(V) \rightarrow 1 \text{ m}^3 = (1 \text{ m}) \times (1 \text{ m}) \times (1 \text{ m})$ $1 \text{ mL} = 1 \text{ cm}^3 = (1 \text{ cm}) \times (1 \text{ cm}) \times (1 \text{ m}) = (10^{-2} \text{ m}) \times (10^{-2} \text{ m}) \times (10^{-2} \text{ m}) = (10^{-2} \times 10^{-2} \times 10^{-2}) \text{ m}^3 = 10^{-6} \text{ m}^3$ $1 \text{ L} = 1 \text{ dm}^3 = 10^{-3} \text{ m}^3$ $1 \text{ mL} = 10^{-3} \text{ L}$ - Density $(d) \rightarrow \text{mass}(m)$ per unit volume (V) $\rightarrow (d = m/V)$ unit of $d = (1 \text{ kg})/(1 \text{ m}^3) = 1 \text{ kg/m}^3$ - Velocity $(v) \rightarrow \text{distance } (l)$ per unit time (t) $\rightarrow (v = l/t)$ unit of v = (1 m)/(1 s) = 1 m/s

- Extensive properties depend on sample size (mass, volume, length, ...)
- Intensive properties independent of sample size (density, temperature, color, ...)

Example:

What is the density of an alloy in g/cm³, if 55 g of it displace 9.1 mL of water? $d = m/V = (55 \text{ g})/(9.1 \text{ mL}) = 6.0 \text{ g/mL} = 6.0 \text{ g/cm}^3$

Example:

- Convert the density of gold, **19.3 g/cm³**, to **kg/m³**.
- ⇒ need to convert both the numerator and denominator $g \rightarrow kg$ and $cm^3 \rightarrow m^3$ 1 kg = 10³ g

 $1 \text{ cm} = 10^{-2} \text{ m} \implies 1 \text{ cm}^3 = (10^{-2})^3 \text{ m}^3 = 10^{-6} \text{ m}^3$

$$d = 19.3 \frac{g}{cm^3} \times \left(\frac{1 \, kg}{10^3 \, g}\right) \times \left(\frac{1 \, cm^3}{10^{-6} \, m^3}\right) = 19.3 \times 10^3 \, \frac{kg}{m^3}$$

- Temperature (T) a measure of how hot or cold an object is relative to other objects T reflects the thermal energy of the object T is an intensive property
 Heat the flow of thermal energy between objects Heat flows from objects with higher T to
 - Heat flows from objects with higher T to objects with lower T
 - Heat is an extensive property
 - Heat and temperature are different
- Thermometers
 - -Used to measure T

- The Celsius scale
 - $-0^{\circ}C \rightarrow$ freezing point of water
 - $-100^{\circ}C \rightarrow \text{boiling point of water}$
- The Fahrenheit scale
 - $-0^{\circ}F \rightarrow$ freezing point of salt/water mixture
 - $-100^{\circ}F \rightarrow body temperature$
 - water freezes at 32°F and boils at 212°F
- \Rightarrow 100 Celsius degrees \leftrightarrow 180 Fahrenheit degrees

- The Kelvin scale absolute temperature scale
 - $-0 \text{ K} \rightarrow \text{lowest possible temperature}$
 - $-0 \text{ K} = -273.15^{\circ}\text{C}$
 - same size of degree unit as Celsius
- \Rightarrow water freezes at 273.15 K and boils at 373.15 K

• $T K = T^{\circ}C + 273.15$

• $T^{\circ}C = T K - 273.15$

Example:

- Convert -40°F in °C and K.
- $T^{\circ}C = (5^{\circ}C/9^{\circ}F) \times [-40^{\circ}F 32^{\circ}F] =$ = $(5/9) \times (-72)^{\circ}C = -40^{\circ}C$
- $T \text{ K} = -40^{\circ}\text{C} + 273.15 = 233 \text{ K}$

1.5 Uncertainty of Measurements

- Represents the reliability of measurements
- Reported as: number ± uncertainty (4.88 ± 0.05 kg)
- If not reported: assume ±1 in the last reported digit (3.7 cm → 3.7 ± 0.1 cm)
- Exact numbers no uncertainty (5 tables, 10 apples, 1 min = 60 s, 1 in = 2.54 cm)
- Significant figures digits of a number known with some degree of certainty

 All non-zero digits
 All zeros after the first non-zero digit
 Exception trailing zeros in numbers without decimal point are not significant

 More significant figures ↔ less uncertainty

 Examples:

 1.32 → 3 sf
 0.005030 → 4 sf
 4500 → 2 sf
 4500. → 4 sf

Scientific notation – representation in the form → A×10^a
-A → a decimal number between 1 and 10
-a → a positive or negative integer
Examples:
0.00134 = 1.34×10⁻³
134 = 1.34×10²
- all digits in A are significant

• Examples of significant figures

Decimal notation	Scientific notation	Number of st
0.751	7.51×10^{-1}	3
0.007 51	7.51×10^{-3}	3
0.070 51	7.051×10^{-2}	4
0.750 100	$7.501\ 00\ imes\ 10^{-1}$	6
7.5010	7.5010	5
7501	7.501×10^{2}	4
7500	7.5×10^{3}	2*
7500.	7.500×10^{3}	4

• Significant figures in calculations

- Rounding off (only at the end of a calculation)
 round up, if next digit is above 5
 - round down, if next digit is below 5
 - round to the nearest even number, if next digit is equal to 5 and it is the last nonzero digit of the number (if 5 is not the last nonzero digit, round up)

 $3.765 \rightarrow 3.76$

 $3.755 \rightarrow 3.76$

Examples: Round to 3 sf.

 $3.7643 \rightarrow 3.76$ $3.7683 \rightarrow 3.77$

- $3.7653 \rightarrow 3.77$
- $3.765 \rightarrow 3.76$

Examples:
$0.0354 + 12.1 = 12.1 \leftarrow (12.1354)$
5.7×0.0651 = 0.37 ← (0.37107)
5.7/0.0651 = 88 ← (87.55760369)
3.568 in × (2.54 cm/1 in) = 9.063 cm

• Precision and accuracy

- Two aspects of uncertainty
- **Precision** agreement among repeated measurements
 - Random error deviation from the average in a series of repeated measurements (some values higher, some values lower than the average)

small random error \leftrightarrow high precision

high precision \leftrightarrow more sf in the result

- Accuracy agreement of a measurement with the true or accepted value
 - Systematic error deviation of the average from the true value (present in the whole set of measurements – either all high or all low)

small systematic error \leftrightarrow high accuracy

- **Instrument calibration** comparison with a known standard
 - -Essential for avoiding systematic error

Example:

• A car is moving at exactly **60 mi/hr**. Compare the precision and accuracy of the following two series of speed measurements using two different radars.

A → 61.5, 58.3, 62.7, 63.5, 57.1 (average 60.6)

- B → 62.0, 62.5, 61.8, 62.2, 62.1 (average 62.1)
- $A \rightarrow$ more accurate, less precise
- $B \rightarrow less$ accurate, more precise