

Stoichiometry

- Studies the quantitative aspects of chemical reactions

3.1 The Mole

• Unit for amount of substance in terms of the number of entities (atoms, molecules, ...) in it.

1 mol of entities \rightarrow # of atoms in 12 g of ¹²C

1 atom of ${}^{12}C \rightarrow 1.99265 \times 10^{-23} \text{ g}{}^{12}C$ (mass spectrometry) 12 $g{}^{12}C \times [1 \text{ atom}/1.99265 \times 10^{-23} \text{ g}{}^{12}C] = 6.022 \times 10^{23} \text{ atoms}$

- \Rightarrow 1 mol of entities \rightarrow 6.022×10²³ entities
- Avogadro's number (N_A) number of entities per 1 mol $\rightarrow N_A = 6.022 \times 10^{23}$ /mol

•	The atomic mass (in <i>amu</i>) of an element is
	numerically equal to the mass $(in g)$ of 1 mol
	of the element
	10

- $-{}^{12}C \rightarrow 12 \text{ amu} \quad 1 \text{ mol } {}^{12}C \rightarrow 12 \text{ g (definitions)}$
- $-C \rightarrow 12.01 \text{ amu} \quad 1 \text{ mol } C \rightarrow 12.01 \text{ g}$
- $-H \rightarrow 1.008 \text{ amu} \quad 1 \text{ mol } H \rightarrow 1.008 \text{ g}$
- $-O \rightarrow 16.00 \text{ amu} \quad 1 \text{ mol } O \rightarrow 16.00 \text{ g}$
- The molecular (formula) mass (in *amu*) of a compound is numerically equal to the mass (in g) of 1 mol of the compound
 - $-CO_2 \rightarrow 44.01 \text{ amu}$ 1 mol $CO_2 \rightarrow 44.01 \text{ g}$
- ⇒1 mol of a substance has a fixed mass (can be used to measure moles of substances by weighing them)

Molar Mass (M)

- Mass of a substance per 1 mol of its entities

 element → atoms (or molecules for H₂, O₂, P₄, ...)
 molecular compound → molecules
 - $-ionic \text{ compound} \rightarrow \text{ formula units}$
- Units of $M \rightarrow g/mol$
- $M = m_{particle} \times N_A$

Example:

What is the molar mass of ¹H, if the mass of 1 atom ¹H is 1.673×10^{-24} g?

 $M = 1.673 \times 10^{-24} \text{g} \times 6.022 \times 10^{23} / \text{mol} = 1.007 \text{ g/mol}$

M is numerically equal to the atomic, molecular, or formula mass of the substance

 For elements, *M* = atomic mass (from per. table)
 For molecular compounds and molecular elements, *M* = molecular mass
 For ionic compounds, *M* = formula mass
 ⇒ For compounds and molecular elements, *M* equals the sum of the molar (atomic) masses of the elements in the formula

 Example:

 Calculate the molar masses of O₂ and Li₂O.
 M(O₂) = 2×16.00 = 32.00 g/mol

 $M(\text{Li}_2\text{O}) = 2 \times 6.941 + 1 \times 16.00 = 29.88 \text{ g/mol}$

- Conversion between moles (*n*) and masses (*m*) of elements **Example:** What is the mass of 1.221 mol Kr? $m = 1.221 \text{ mol} \times 83.80 \text{ g/mol} = 102.3 \text{ g}$ **Example:** How many moles of atoms are present in 1.23 g of Kr? $1.23 \text{ g Kr} \times \left(\frac{1 \text{ mol Kr}}{83.80 \text{ g Kr}}\right) = 1.47 \times 10^{-2} \text{ mol Kr}$
- Conversion between moles (*n*) and masses (*m*) of compounds (same as for elements) **Example:** Calculate the number of moles of urea, $(NH_2)_2CO$, in 2.3×10^5 kg of this compound. $M = 2 \times 14.00 + 4 \times 1.008 + 1 \times 12.01 + 1 \times 16.00 = 60.04$ g/mol 2.3×10^5 kg urea $\times \left(\frac{10^3 \text{g urea}}{1 \text{ kg urea}}\right) \times \left(\frac{1 \text{ mol urea}}{60.04 \text{ g urea}}\right)$ $= 3.8 \times 10^6$ mol urea
- Conversion between masses and number of entities of elements and compounds

Example:

Calculate the number of CO_2 molecules and oxygen atoms in **15.8 g** of CO_2 .

 $M(CO_2) = 12.01 + 2 \times 16.00 = 44.01 \text{ g/mol}$

$$15.8 \text{g.CO}_{2} \left(\frac{1 \text{ mol CO}_{2}}{44.01 \text{ g.CO}_{2}} \right) \left(\frac{6.022 \times 10^{23} \text{ molec.CO}_{2}}{1 \text{ mol CO}_{2}} \right)$$
$$= 2.16 \times 10^{23} \text{ molec.CO}_{2}$$
$$2.16 \times 10^{23} \text{ molec.CO}_{2} \left(\frac{2 \text{ atoms O}}{1 \text{ molec.CO}_{2}} \right) = 4.32 \times 10^{23} \text{ atoms O}$$

• Conversion between masses of compounds and masses of their elements using chemical formulas (*The subscripts in formulas refer to individual atoms as well as to moles of atoms*) **Example:** What is the mass of H in **5.00 g** CH₄? CH₄ \rightarrow *M* = 1×12.01 + 4×1.008 = 16.04 g/mol H \rightarrow *M* = 1.008 g/mol 5.00 g CH₄ $\times \left(\frac{1 \text{ mol} \text{ CH}_4}{16.04 \text{ g} \text{ CH}_4}\right) \times \left(\frac{4 \text{ mol} \text{ H}}{1 \text{ mol} \text{ CH}_4}\right) \times \left(\frac{1.008 \text{ g H}}{1 \text{ mol} \text{ H}}\right) = 1.26 \text{ g H}$

Mass Percentage Composition

• Percentage by mass of each element in a compound

 $Mass\% = [m_{element}/m_{compound}] \times 100\%$

- Calculation of Mass% from chemical formulas
 - Consider 1 mol of a compound
- $\mathbf{m}_{comp} = M$ of comp

m_{elem} = (# moles of elem in 1 mol of comp)×(*M* of elem) Note: The # of moles of the element in 1 mol of the compound equals the # of atoms of the element in the formula of the compound

Mass% of element

$$\left[\frac{(\# \text{ atoms of element in formula})(M \text{ of element})}{(M \text{ of compound})}\right] \times 100\%$$

Example:

Calculate the Mass% of O in CO₂. CO₂ \rightarrow $M = 1 \times 12.01 + 2 \times 16.00 = 44.01 \text{ g/mol}$ O \rightarrow M = 16.00 g/molMass% O = $\left(\frac{2 \times 16.00 \text{ g/mol}}{44.01 \text{ g/mol}}\right) \times 100\% = 72.71\%$

• Calculation of Mass% from chemical analysis

Example:

Calculate the mass percentage of C in nicotine, if analysis shows that 5.00 g of nicotine contain 3.70 g C, 0.44 g H and 0.86 g N.

Mass% C =
$$\left(\frac{3.70 \text{ g C}}{5.00 \text{ g nicotine}}\right) \times 100\% = 74.0\%$$

3.2 Determination of Chemical Formulas

- Molecular formulas numbers of atoms of each element in a molecule
- Empirical formulas relative numbers of atoms of each element using the smallest whole numbers

Example:

acetic acid $\rightarrow C_2H_4O_2$ (MF) $\rightarrow CH_2O$ (EF) formaldehyde $\rightarrow CH_2O$ (MF) $\rightarrow CH_2O$ (EF) glucose $\rightarrow C_6H_{12}O_6$ (MF) $\rightarrow CH_2O$ (EF)

Determining Empirical Formulas

- Elemental analysis gives the masses of the elements in a given mass of the compound or the Mass% composition
- EF from Mass% data
 - 1. Consider 100 g of the compound
 - 2. The masses of the elements equal their mass%
 - 3. Convert the masses of the elements to moles
 - 4. Determine the relative number of moles (mol ratio)
 - 5. Simplify the mole ratio to whole numbers
- EF from mass data
 - Omit steps 1 and 2 above

Example:

- Determine the EF of nicotine, if the mass% of C, H and N in it are 74.0, 8.7 and 17.3 %, respectively.
- 1. Consider 100 g nicotine
- 2. 74.0 g C, 8.7 g H, 17.3 g N
- 3. Convert masses to moles:

74.0 g C×(1 mol C/12.01 g C) = 6.16 mol C 8.7 g H×(1 mol H/1.008 g H) = 8.6 mol H 17.3 g N×(1 mol N/14.01 g N) = 1.23 mol N

Determining Molecular Formulas

• The MF is a whole-number multiple of the EF

$$\Rightarrow M = M_{EF} \times \mathbf{n}$$

 $-M \rightarrow \text{molar mass}$

 $-M_{EF} \rightarrow \text{EF}$ mass

 $-\mathbf{n} \rightarrow$ whole number (number of EFs per molecule)

$$\Rightarrow$$
 n = M/M_{EF}

• Determining MFs from EFs and molar masses

Example:

• The empirical formula of nicotine is C_5H_7N and its molar mass is 162.23 g/mol. MF = ?

 $M_{EF} \rightarrow 5 \times 12.01 + 7 \times 1.008 + 1 \times 14.01 = 81.12 \text{ g/mol}$

$$n = \frac{M}{M_{EF}} = \frac{162.23 \text{ g/mol}}{81.12 \text{ g/mol}} = 2.000 \cong 2$$

 \Rightarrow MF = 2 × EF

 $MF \rightarrow C_{10}H_{14}N_2$

Combustion Analysis

- A method for elemental analysis of combustible organic compounds through their combustion in excess O₂
 - The C in the sample is converted to CO₂ which is absorbed in a NaOH absorber and weighed
 - The **H** in the sample is converted to H_2O which is absorbed in a P_4O_{10} absorber and weighed
 - If a third element (O, N, ...), it passes through the absorbers

1 mol C from the sample \rightarrow 1 mol CO₂

2 mol H from the sample \rightarrow 1 mol H₂O

Example:

When 0.236 g aspirin is burned in excess O_2 , 0.519 g CO_2 and 0.0945 g H_2O are formed. Determine the mass % of C, H and O in aspirin.

- Calculate the masses of C and H in the sample based on the masses of CO₂ and H₂O:
- Calculate the mass of O by subtracting the masses of C and H from the total mass of the sample

$$0.519 \text{ g } \text{CO}_2 \times \left(\frac{1 \text{ mol } \text{CO}_2}{44.01 \text{ g } \text{CO}_2}\right) \times \left(\frac{1 \text{ mol } \text{C}}{1 \text{ mol } \text{CO}_2}\right) \times \left(\frac{12.01 \text{ g } \text{C}}{1 \text{ mol } \text{C}}\right) = 0.142 \text{ g } \text{C}$$

$$0.0945 \text{ g } \text{H}_2\text{O} \times \left(\frac{1 \text{ mol } \text{H}_2\text{O}}{18.02 \text{ g } \text{H}_2\text{O}}\right) \times \left(\frac{2 \text{ mol } \text{H}}{1 \text{ mol } \text{H}_2\text{O}}\right) \times \left(\frac{1.008 \text{ g } \text{H}}{1 \text{ mol } \text{H}}\right) = 0.0106 \text{ g } \text{H}$$

$$0.236-0.142-0.0106=0.084 \text{ g } \text{O}$$

%C=
$$\left(\frac{0.142 \text{ g C}}{0.236 \text{ g sample}}\right) \times 100\% = 60.0\%$$

%H= $\left(\frac{0.0106 \text{ g H}}{0.236 \text{ g sample}}\right) \times 100\% = 4.48\%$
%O= $\left(\frac{0.084 \text{ g O}}{0.236 \text{ g sample}}\right) \times 100\% = 35.5\%$

The empirical formula can be determined from the percentage composition in a subsequent step

3.3 Chemical Equations

• Represent chemical reactions

Reactants \rightarrow Products

• Skeletal equations – show identities of reactants and products

$\rm H_2 + O_2 \rightarrow H_2O$

- Law of conservation of mass
 - Atoms are neither created nor destroyed (they only change bonding partners)
 - Same atoms are present in the reactants as in the products

- Balanced chemical equations – same number of atoms of each element appear
 - on each side of the equation – stoichiometric coefficients – needed to balance the equations

 $2H_2 + O_2 \rightarrow 2H_2O$

- Microscopic view
- (2 molec. $H_2 + 1$ molec. $O_2 \rightarrow 2$ molec. H_2O)
- Macroscopic view

 $(2 \text{ mol } H_2 + 1 \text{ mol } O_2 \rightarrow 2 \text{ mol } H_2O)$ $(4.032 \text{ g } H_2 + 32.00 \text{ g } O_2 \rightarrow 36.032 \text{ g } H_2O)$

- The stoichiometric coefficients can be treated as relative number of moles of reactants and products
- Physical state symbols
 - (s) solid; (l) liquid; (g) gas; (aq) aqueous solution

 $2K(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2(g)$

Balancing Chemical Equations

- Balancing by inspection (only simple cases)
 - Change stoichiometric coefficients only
 - Never change subscripts in formulas
 - Never add other substances to the equation

- Systematic method
 - 1. Write the skeletal equation
 - 2. Balance one element at a time using coefficients
 - Start with the elements in the most complex substance and finish with those in the least complex one
 - Alternatively, start with the element present in the fewest number of formulas and finish with the element present in the greatest number of formulas
 - Use fractional coefficients if necessary
 - 3. If necessary multiply the whole equation by a factor to clear the fractional coefficients
 - 4. Verify that the equation is balanced and the coefficients are the smallest whole numbers
 - 5. Specify physical states

Example: Write the balanced equation for the combustion of ethane, C_2H_6 , to carbon dioxide and liquid water.

$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$	skeletal
$C_2H_6 + O_2 \rightarrow 2CO_2 + H_2O$	for C
$C_2H_6 + O_2 \rightarrow 2CO_2 + 3H_2O$	for H 🖋
$C_2H_6 + (7/2)O_2 \rightarrow 2CO_2 + 3H_2O$	for O 🖋
multiply eq. by 2	
$\mathbf{2C_2H_6} + \mathbf{7O_2} \rightarrow \mathbf{4CO_2} + \mathbf{6H}$	2 0
$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) +$	6H ₂ O(l)

 Often polyatomic ions can be treated as single entities 	
Example: Balance the following skeletal eq.	
in aqueous solution:	
$Co(NO_3)_3 + (NH_4)_2S \rightarrow Co_2S_3 + NH_4NO_3$	
→balance Co and S:	
$2Co(NO_3)_3 + 3(NH_4)_2S \rightarrow Co_2S_3 + NH_4NO_3$	
\rightarrow balance NH ₄ and NO ₃ :	
$2Co(NO_3)_3 + 3(NH_4)_2S \rightarrow Co_2S_3 + 6NH_4NO_3$	
\rightarrow add physical state symbols:	
$2\text{Co}(\text{NO}_3)_3(\text{aq}) + 3(\text{NH}_4)_2\text{S}(\text{aq}) \rightarrow \text{Co}_2\text{S}_3(\text{s}) + 6\text{NH}_4\text{NO}_3(\text{aq})$	

3.4 Calculating Amounts of Reactants and Products

Stoichiometric Equivalences

• Balanced chemical equations contain definite stoichiometric relations between reactants and products → stoichiometric **mole ratios**

Example: $2H_2 + O_2 \rightarrow 2H_2O$

$\begin{array}{l} 2 \mod H_2 \Leftrightarrow 1 \mod O_2 \\ 2 \mod H_2 \Leftrightarrow 2 \mod H_2O \\ 1 \mod O_2 \Leftrightarrow 2 \mod H_2O \end{array}$	<pre>}</pre>	stoich equiva
1 mol O ₂ / 2 mol H ₂ 2 mol H ₂ O / 2 mol H ₂ 2 mol H ₂ O / 1 mol O ₂	}	stoich mole

stoichiometric equivalences

stoichiometric mole ratios

 Stoichiometric conversion factors are reaction specific
Example: Calculate the amount of O ₂ needed to produce 3.5 mol H ₂ O by combustion of methane
(CH ₄).
\rightarrow balanced equation:
$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
\rightarrow mole ratio (conversion factor):
$2 \mod O_2 \Leftrightarrow 2 \mod H_2O$
[2 mol O ₂ /2 mol H ₂ O]
$3.5 \operatorname{mol} \operatorname{H}_2 \operatorname{O} \times \left(\frac{2 \operatorname{mol} \operatorname{O}_2}{2 \operatorname{mol} \operatorname{H}_2 \operatorname{O}} \right) = 3.5 \operatorname{mol} \operatorname{O}_2$

Example: Calculate the mass of oxygen needed to completely burn 5.4 kg of butane (C₄H₁₀). \rightarrow balanced equation: 2C₄H₁₀ + 13O₂ \rightarrow 8CO₂ + 10H₂O \rightarrow mole ratio: [13 mol O₂/2 mol C₄H₁₀] \rightarrow molar masses: C₄H₁₀ \rightarrow 58.1 g/mol O₂ \rightarrow 32.0 g/mol 5.4 kg C₄H₁₀ $\times \left(\frac{10^3 \text{ g C}_4 \text{ H}_{10}}{1 \text{ kg C}_4 \text{ H}_{10}}\right) \times \left(\frac{1 \text{ mol C}_4 \text{ H}_{10}}{58.1 \text{ g C}_4 \text{ H}_{10}}\right) \times \left(\frac{13 \text{ mol O}_2}{2 \text{ mol C}_4 \text{ H}_{10}}\right) \times \left(\frac{32.0 \text{ g O}_2}{1 \text{ mol O}_2}\right) = 1.9 \times 10^4 \text{ g O}_2 = 19 \text{ kg O}_2$

Example: Calculate the theoretical yield of carbon dioxide produced by the combustion of **25.0** g propane (C_3H_8) in excess oxygen.

 \rightarrow balanced equation:

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

→mass-to-mass conversion:

 $25.0 \text{ g } \text{C}_{3}\text{H}_{8} \times \left(\frac{1 \text{ mol } \text{C}_{3}\text{H}_{8}}{44.09 \text{ g } \text{C}_{3}\text{H}_{8}}\right) \times \left(\frac{3 \text{ mol } \text{C}\text{O}_{2}}{1 \text{ mol } \text{C}_{3}\text{H}_{8}}\right) \times \\ \times \left(\frac{44.01 \text{ g } \text{C}\text{O}_{2}}{1 \text{ mol } \text{C}\text{O}_{2}}\right) = 74.9 \text{ g } \text{C}\text{O}_{2} \rightarrow \text{Theor. Yield}$

Limiting Reactants

- Reactants present in equivalent amounts
 All reactants are consumed at the same time
- · Nonequivalent amounts of reactants
 - One reactant, called **limiting reactant**, is consumed before the others
 - The other reactants are in excess
- Limiting reactant
 - The reaction stops when the limiting reactant is consumed
 - Limits the maximum amount of product achievable (limits the theoretical yield)
 - Stoichiometric calculations based on the limiting reactant give the lowest amount of product compared to calculations based on the other reactants

Example: Identify the limiting reactant in the reaction of **5.0 mol H**₂ with **3.0 mol N**₂, and determine the theoretical yield of NH_3 in this reaction.

→balanced equation: $3H_2 + N_2 \rightarrow 2NH_3$ →calculate the theoretical yield based on each of the reactants and chose the smaller result: $3.0 \text{ mol } N_2 \times \left(\frac{2 \text{ mol } NH_3}{1 \text{ mol } N_2}\right) = 6.0 \text{ mol } NH_3$ $5.0 \text{ mol } H_2 \times \left(\frac{2 \text{ mol } NH_3}{3 \text{ mol } H_2}\right) = 3.3 \text{ mol } NH_3 \rightarrow Theor. Yield$ smaller amount $\Rightarrow H_2$ is the limiting reactant **Example:** Calculate the theoretical yield of HNO_3 in the reaction of **28 g NO_2** and **18 g H_2O** by the chemical equation:

$3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(l) + NO(g).$

→Calculate the theoretical yield based on each of the reactants and chose the smaller result:

$$18 \text{ g} \text{ H}_{2} \text{O} \times \left(\frac{1 \text{ mol } \text{H}_{2} \text{O}}{18.0 \text{ g} \text{ H}_{2} \text{O}}\right) \times \left(\frac{2 \text{ mol } \text{H} \text{NO}_{3}}{1 \text{ mol } \text{H}_{2} \text{O}}\right) \times \left(\frac{63.0 \text{ g} \text{ H} \text{NO}_{3}}{1 \text{ mol } \text{H} \text{NO}_{3}}\right) = 130 \text{ g} \text{ H} \text{NO}_{3}$$

28 g
$$\operatorname{NO}_2 \times \left(\frac{1 \operatorname{mol} \operatorname{NO}_2}{46.0 \operatorname{g} \operatorname{NO}_2}\right) \times \left(\frac{2 \operatorname{mol} \operatorname{HNO}_3}{3 \operatorname{mol} \operatorname{NO}_2}\right) \times \left(\frac{63.0 \operatorname{g} \operatorname{HNO}_3}{1 \operatorname{mol} \operatorname{HNO}_3}\right) = 26 \operatorname{g} \operatorname{HNO}_3 \rightarrow Theor. Yield$$

smaller amount
$$\Rightarrow \text{The smaller amount of product results} from the calculation based on NO_2
$$\Rightarrow \operatorname{NO}_2$$
 is the limiting reactant and 26 g HNO_3 is the theoretical yield$$

- Preparation of solutions with known molarity

 Transfer a known mass of solute in a volumetric flask
 - Dissolve in small amount of water
 - Add water to the mark

Example:
Calculate the molarity of a solution prepared
by dissolving 5.33 g NaOH in water using a
100.0 mL volumetric flask. \Rightarrow convert the mass to moles:
5.33 g NaOH × $\left(\frac{1 \text{ mol NaOH}}{40.00 \text{ g NaOH}}\right) = 0.133 \text{ mol NaOH}$ \Rightarrow convert volume to liters: 100.0 mL = 0.1000 L
 \Rightarrow divide moles by solution volume:
 $0.133 \text{ mol NaOH} = 1.33 \text{ mol NaOH/L} \rightarrow 1.33 \text{ M NaOH}$

Dilution

- Reducing the concentration of the solute by adding more solvent
- Stock solutions concentrated solutions used to store reagents
- Dilution Procedure
 - Use a pipette to measure a small volume of the concentrated solution and transfer it to a volumetric flask
 - Add solvent to fill the volumetric flask to the mark

 dilution doesn't change the total # of moles of solute in the solution

$$n = M \times V$$
 $n_d = n_c$ $M_d \times V_d = M_c \times V_c$

Example:

Calculate the molarity of a solution prepared by dilution of **5.00 mL 2.0 M HCl** stock solution to **100.0 mL**.

$$M_d = \frac{M_c \times V_c}{V_d} = \frac{2.0 \text{ M} \times 5.00 \text{ mL}}{100.0 \text{ mL}} = 0.10 \text{ M}$$

Limiting reactant problems in solution Example: What mass of H_2 gas can be produced by the reaction of 2.5 g Zn with 2.0 L 0.15 M HCl solution. The other product is $ZnCl_2(aq)$. \Rightarrow balanced equation: Zn(s) + 2HCl(aq) \rightarrow ZnCl₂(aq) + H₂(g) \Rightarrow mole ratios: [1 mol H₂/2 mol HCl] [1 mol H₂/1 mol Zn] \Rightarrow Calculate the mass of H₂ produced based on both reactants and choose the smaller amount

