

- Electrolytes - produce ions in solution (resulting solution conducts electricity)
- Strong electrolytes - completely ionize in solution (soluble salts, strong acids and bases such as $\mathrm{NaCl}, \mathrm{HCl}, \mathrm{KOH}, \ldots$)
- Weak electrolytes - partially ionize in solution (weak acids and bases such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \ldots$)
- Nonelectrolytes - do not ionize in solution (resulting solution does not conduct electricity)
- Molecular compounds (except acids and bases) such as $\mathrm{H}_{2} \mathrm{O}$, sugar, acetone, methanol, ...
- The water dipoles surround the ions on the surface of an ionic compound and pull them away from the crystal \rightarrow hydration \rightarrow electrolyte solution

The Major Classes of Chemical Reactions

4.1 The Role of Water as a Solvent

- Water participates actively in the dissolution process

The dissolution process

- Hydration (solvation) of the solute particles in solution
- The solute particles (ions, molecules, ...) are surrounded by water (solvent) molecules
- The solute particles are evenly spread throughout the solution
- The molecule of water is polar
- The O atom pulls the shared electrons stronger
- The O is partially negative and the Hs are partially positive
- The molecule is bent
\Rightarrow The molecule has a positive and a negative pole \rightarrow dipole

- The water dipoles surround the molecules on the surface of a covalent compound and interact with the polar bonds in it \rightarrow hydration \rightarrow
- If the molecules do not dissociate (most covalent compounds) \rightarrow non-electrolytes
- If the molecules dissociate to ions (for example in acids which contain polar $\mathrm{X}-\mathrm{H}$ bonds) \rightarrow electrolytes
- The solubility of a compound depends in large part on the relative strengths of the attractive forces between its ions or molecules and the forces of hydration

Example:

How many Na^{+}ions are present in 8.2 mL of a $0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}($ aq) solution?
$\mathrm{Na}_{2} \mathrm{SO}_{\mathbf{4}} \rightarrow$ strong electrolyte
$\Rightarrow \mathbf{N a}_{2} \mathbf{S O}_{4}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathbf{2} \mathbf{N a}^{+}(\mathbf{a q})+\mathbf{S O}_{4}{ }^{2-(\mathrm{aq})}$
$0.0082 \mathrm{~K}\left(\frac{0.15 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}\right)$
$\left(\frac{6.022 \times 10^{23} \mathrm{Na}^{+} \text {ions }}{1 \mathrm{~mol} \mathrm{Na}^{+}}\right)=1.5 \times 10^{21} \mathrm{Na}^{+}$ions

4.2 Equations for Reactions in Aqueous Solution

- Overall molecular equation (all reactants and products in their undissociated form)
$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
- Complete (total) ionic equation (all strong electrolytes are completely dissociated to ions (ionized) in aqueous solutions

$$
\left[\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq}), \mathrm{Cl}^{-(\mathrm{aq})]}\right.
$$

$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow$ $\rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$

Example:

Write the net ionic equation corresponding to the following molecular equation:

$$
\begin{aligned}
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) & +\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \\
& \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

\Rightarrow Complete ionic eq:

$$
\begin{aligned}
& 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \\
& \rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}(\mathbf{l})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

\Rightarrow Net ionic eq:

$$
\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

- The \mathbf{H}^{+}ion interacts very strongly with water and forms the hydronium ion, $\mathbf{H}_{3} \mathbf{O}^{+}$

$$
\mathbf{H}^{+}(\mathbf{a q})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$-\mathrm{H}_{3} \mathrm{O}^{+}$is strongly hydrated in water solutions by 1 , 2 or even $3 \mathrm{H}_{2} \mathrm{O}$ molecules $\left(\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}, \mathrm{H}_{7} \mathrm{O}_{3}{ }^{+}, \mathrm{H}_{9} \mathrm{O}_{4}{ }^{+}\right)$
$-\mathrm{H}^{+}$and $\mathrm{H}_{3} \mathrm{O}^{+}$(including the hydrated forms) are equivalent expressions of the hydrogen ion

- Spectator ions - present on both sides of the equation (can be canceled)
$\mathbf{A g}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow$

$$
\rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-(\mathrm{aq})}
$$

- Net ionic equation - no spectator ions

$$
\mathbf{A g}^{+}(\mathbf{a q})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})
$$

- For simplicity, we can omit (aq) after the symbols of all ions in aqueous solutions (assume all ions in solution as aqueous)

$$
\mathbf{A g}^{+}+\mathbf{C l}^{-} \rightarrow \mathbf{A g C l}(\mathrm{s})
$$

4.3 Precipitation Reactions

- Formation of an insoluble product (precipitate) after mixing of two electrolyte solutions
- The driving force of precipitation reactions is the elimination of ions from the solution by formation of an insoluble product

Example:

When mercury(I) nitrate and potassium phosphate solutions are mixed, mercury(I) phosphate precipitates. Write the net ionic equation.

$$
\text { mercury }(\mathrm{I}) \rightarrow \mathbf{H g}_{2}{ }^{2+} \rightarrow \mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}
$$

\Rightarrow Skeletal eq:

$$
\begin{aligned}
& \mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \\
& \quad \rightarrow\left(\mathrm{Hg}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{KNO}_{3}(\mathrm{aq})
\end{aligned}
$$

\Rightarrow Overall balanced eq:

$$
\begin{aligned}
& 3 \mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{~K}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \\
& \rightarrow\left(\mathrm{Hg}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{KNO}_{3}(\mathrm{aq})
\end{aligned}
$$

\Rightarrow Complete ionic eq:

$$
\begin{aligned}
3 \mathrm{Hg}_{2}{ }^{2+}+ & 6 \mathrm{NO}_{3}^{-}+6 \mathrm{~K}^{+}+2 \mathrm{PO}_{4}{ }^{3-} \rightarrow \\
& \rightarrow\left(\mathrm{Hg}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{~K}^{+}+6 \mathrm{NO}_{3}^{-}
\end{aligned}
$$

\Rightarrow Net ionic eq:

$$
3 \mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{PO}_{4}{ }^{3-} \rightarrow\left(\mathrm{Hg}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})
$$

Predicting the outcome of precipitation
$\quad-$ Precipitation reactions are classified as double
replacement (metathesis) reactions - exchange of
ions leads to an insoluble combination of ions

4.4 Acid-Base Reactions

- Acids - sharp, sour taste; Bases - soapy, bitter taste
- Arrhenius acids - release hydrogen ions, $\mathbf{H}^{+}(\mathbf{a q})$ [or $\left.\mathbf{H}_{3} \mathbf{O}^{+}(\mathrm{aq})\right]$, in water solutions
- Acidic hydrogen atoms in molecules
- can be released as H^{+}ions
- formulas normally begin with the acidic Hs

Examples:

$\Rightarrow \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCN}, \ldots$
$\mathrm{HCl}(\mathrm{g}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+}+\mathrm{Cl}^{-}$
$\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

Example:

Predict the outcome of the mixing of silver nitrate and potassium carbonate solutions.
\Rightarrow Ions present in the solution:

$$
\mathrm{Ag}^{+}, \mathrm{NO}_{3}^{-}, \mathrm{K}^{+}, \mathrm{CO}_{3}{ }^{\mathbf{2 -}}
$$

\Rightarrow consider all possible combinations of ions to find if an insoluble product can form:
Ag^{+}and $\mathrm{CO}_{3}{ }^{\mathbf{2 -}}$ form insoluble $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ \Rightarrow Net ionic eq: $\mathbf{2 A g}{ }^{+}+\mathbf{C O}_{3}{ }^{\mathbf{2 -}} \rightarrow \mathbf{A g}_{2} \mathbf{C O}_{3}(\mathbf{s})$
Note: The net ionic equation can be predicted directly from the formula of the precipitate.

- Arrhenius bases - release hydroxide ions, $\mathbf{O H}^{-}$, in water solutions

Examples:

$\Rightarrow \mathbf{N a O H}$ dissolves in water and dissociates to $\mathbf{N a}^{+}$and $\mathbf{O H}^{-}$.

$$
\mathrm{NaOH}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}+\mathrm{OH}^{-}
$$

\Rightarrow Ammonia gas, $\mathbf{N H}_{\mathbf{3}}$, dissolves in water and produces $\mathbf{N H}_{4}^{+}$and $\mathbf{O H}^{-}$.

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

- Strong acids - almost completely ionized in aqueous solutions

$$
\Rightarrow \mathrm{HBr}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-}
$$

- The strong acids in aqueous solution are:
$\mathrm{HCl}(\mathrm{aq}), \mathrm{HBr}(\mathrm{aq}), \mathrm{HI}(\mathrm{aq}), \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, HClO_{4}, and HClO_{3}
- Weak acids - only partially ionized in aqueous solutions ($\mathrm{HF}, \mathrm{H}_{2} \mathrm{~S}$, organic acids ...) $\Rightarrow \mathrm{CH}_{3} \mathbf{C O O H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$

$$
\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \quad(\sim 1 \% \text { ionized })
$$

Neutralization

$$
\text { acid + base } \rightarrow \text { salt + water }{ }_{(\text {or other products) }}
$$

- Salt - an ionic compound with a cation from the base and an anion from the acid
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathbf{2 K O H}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- Neutralization reactions are also viewed as double replacement (metathesis) reactions exchange of ions leads to a salt and water
Example: Predict the products of the reaction between carbonic acid and calcium hydroxide.
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathbf{O H})_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$
- Strong bases - almost completely ionized in aqueous solutions (oxides and hydroxides of alkali and alkaline earth metals)
$\Rightarrow \mathbf{K O H}(\mathrm{s}) \xrightarrow{\mathrm{H}_{0} \mathrm{O}} \mathrm{K}^{+}+\mathrm{OH}^{-}$
($\sim 100 \%$ ionized)
- The strong bases in aqueous solution are: Group I hydroxides, $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$, and $\mathrm{Ba}(\mathrm{OH})_{2}$
- Weak bases - only partially ionized in aqueous solutions (ammonia, amines, ...)
$\Rightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
(~1\% ionized)

Proton Transfer

- Net ionic equations for reactions between strong acids and bases

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\mathbf{H}^{+}+\mathrm{Cl}^{-}+\mathrm{K}^{+}+\mathbf{O H}^{-} \rightarrow \mathbf{K}^{+}+\mathrm{Cl}^{-}+\mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{l})
$$

$$
\Rightarrow \mathbf{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{I})
$$

$-\mathrm{H}^{+}$is present in the form of $\mathbf{H}_{3} \mathbf{O}^{+}$
$\Rightarrow \mathbf{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{I})$
Net ionic equation for all strong acid/strong base reactions (transfer of a proton from $\mathrm{H}_{3} \mathrm{O}^{+}$to OH^{-})

- The driving force of strong acid-base reactions is the elimination of ions $\left(\mathrm{H}^{+}\right.$and $\left.\mathrm{OH}^{-}\right)$from the solution by formation of water
- Net ionic equations for reactions between weak acids and strong bases
Example:
$\mathrm{HF}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\mathrm{HF}(\mathrm{aq}) \rightarrow$ weak acid (only partially ionized)
$\mathrm{HF}(\mathrm{aq})+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{Na}^{+}+\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\Rightarrow \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-} \rightarrow \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
\Rightarrow transfer of a proton from HF to $\mathbf{O H}^{-}$
- Net ionic equations for reactions between strong acids and weak bases

Example:

$\mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
$\mathbf{N H}_{3}(\mathrm{aq}) \rightarrow$ weak base (only partially ionized)
$\mathbf{H}^{+}+\mathrm{Cl}^{-}+\mathbf{N H}_{3}(\mathrm{aq}) \rightarrow \mathbf{N H}_{4}^{+}+\mathrm{Cl}^{-}$
$\Rightarrow \mathbf{H}^{+}+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}$
$-\mathrm{H}^{+}$is present in the form of $\mathbf{H}_{3} \mathbf{O}^{+}$
$\Rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
\Rightarrow transfer of a proton from $\mathbf{H}_{3} \mathbf{O}^{+}$to $\mathbf{N H}_{3}$

Gas Formation Reactions

- Reactions of salts of weak or volatile acids with strong acids

Example:

$$
\begin{aligned}
& \mathrm{ZnS}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \mathrm{ZnS}(\mathrm{~s})+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \Rightarrow \\
& \Rightarrow \mathrm{ZnS}(\mathrm{~s})+2 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \\
& -\mathrm{H}^{+} \text {is present in the form of } \mathbf{H}_{3} \mathbf{O}^{+} \\
& \Rightarrow \\
& \Rightarrow \mathrm{ZnS}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Rightarrow \\
& \Rightarrow \text { transfer of a proton from } \mathbf{H}_{3} \mathbf{O}^{+} \text {to } \mathrm{S}^{2-}
\end{aligned}
$$

- The titrant (acid or base) is added slowly to the analyte (base or acid) until the indicator changes color
- At the end point the amount of acid is equivalent to the amount of base - the concentration of the analyte is calculated from the measured volumes of the solutions and the titrant concentration

4.5 Redox Reactions

Oxidation and reduction

- Transfer of electrons from one species to another
- Driving force of redox reactions - movement of electrons from an atom with less to an atom with more attraction for electrons

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

NaCl is an ionic compound:

$$
\begin{array}{ll}
\quad 2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{s})+2 \mathrm{Cl}^{-}(\mathrm{s}) \\
\mathrm{Na}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{s}) & \Rightarrow \text { loss of } 1 \mathrm{e}^{-} \text {by } \mathrm{Na} \\
\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{s}) & \Rightarrow \text { gain of } 2 \mathrm{e}^{-} \text {by } \mathrm{Cl}_{2}
\end{array}
$$

Result \rightarrow transfer of electrons from Na to $\mathrm{Cl}_{\mathbf{2}}$

Acid-base titrations

- Titrations use measurements of volumes
- Based on stoichiometric acid-base reactions between the analyzed solution (analyte) and a solution with known concentration (titrant)
- Equivalence point - the amount of titrant added is stoichiometrically equivalent to the amount of analyte present in the sample
- Indicators - change color at the equivalence point (signal the end point of the titration)

Example: A $25.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is titrated with $\mathbf{1 6 . 4} \mathbf{~ m L ~} 0.255 \mathrm{~m} \mathrm{KOH}$ solution. What is the molarity of the acid solution.
\Rightarrow balanced equation:
$\mathbf{2 K O H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathbf{2 H}_{2} \mathrm{O}_{(\mathrm{l})}$
\Rightarrow mole ratio: $\quad\left[1 \mathbf{~ m o l ~ H} \mathbf{H}_{2} \mathrm{SO}_{\mathbf{4}} / \mathbf{2} \mathbf{~ m o l ~ K O H}\right]$
$16.4 \times 10^{-3} \mathrm{~L} \times\left(\frac{0.255 \mathrm{~mol} \mathrm{KOH}}{1 \mathrm{~L}}\right) \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{KOH}}\right)=$
$=2.09 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{2.09 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{25.0 \times 10^{-3} \mathrm{~L}}=8.36 \times 10^{-2} \mathrm{MH}_{2} \mathrm{SO}_{4}$

- Oxidation - loss of electrons (Na is oxidized)
- term originates from reactions of substances with oxygen
- Reduction - gain of electrons $\left(\mathrm{Cl}_{2}\right.$ is reduced)
- term originates from reactions of metal oxides with $\mathrm{C}, \mathrm{CO}, \mathrm{H}_{2}$, etc. to extract (reduce) the pure metal
- Oxidation and reduction can not occur independently
- electrons gained by one species must be lost by another (e^{-}gained by Cl_{2} are lost by Na)
$-\mathrm{Cl}_{2}$ oxidizes Na and Na reduces Cl_{2}
- The transfer of electrons during redox reactions is not always complete

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{H}_{2} \mathrm{O}$ is a covalent compound with polar bonds in which the electrons are not shared equally

$$
\mathbf{H}^{\delta+}-\mathbf{O}^{\delta-}-\mathbf{H}^{\delta+}
$$

\Rightarrow Electrons are shifted from H to O
$\mathbf{H} \rightarrow \mathbf{H}^{\delta+} \quad \Rightarrow$ loss of e^{-}density by \mathbf{H}
$\mathrm{O} \rightarrow \mathrm{O}^{\delta-} \quad \Rightarrow$ gain of e^{-}density by O

Result \rightarrow incomplete transfer of electrons

 from H to OOxidation Numbers (Ox\#)

- Oxidation number (oxidation state) - the charge an atom would have if the \mathbf{e}^{-s} in polar bonds are not shared but are transferred completely to the atom with more attraction for e^{-s}
- Assigned to each element in a substance
- Oxidation numbers can help determine whether substances are oxidized or reduced
- Oxidation - increase in Ox\#
- Reduction - decrease in Ox\#
$\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{s}) \quad \Rightarrow$ Ox\# increases $(0 \rightarrow+1)$
$\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{s}) \Rightarrow$ Ox\# decreases $(0 \rightarrow-1)$

- The highest and lowest Ox\# for main group elements can be predicted from the periodic table (with some exceptions)	${ }^{+1}-1$		Group number					
		1A	2A	3A	4A	5A	6A	7A
		+1	+2	+3		5/-3	6	7 -
	2	Li	Be	B	C	N	0	F
	3	Na	Mg	AI	Si	P	S	Cl
	4	K	Ca	Ga	Ge	As	Se	Br
	5	Rb	Sr	In	Sn	Sb	Te	1
	6	Cs	Ba	TI	Pb	Bi	Po	At
	7	Fr	Ra		114			

- Oxidizing agent - causes oxidation (removes electrons from the species being oxidized)
- is the species being reduced
- contains an element which undergoes a decrease in Ox\# (reduction)
- Reducing agent - causes reduction (supplies electrons to the species being reduced)
- is the species being oxidized
- contains an element which undergoes an increase in $\mathrm{Ox} \#$ (oxidation)

	X loses electron(s) X is oxidized X is the reducing agent X increases its oxidation number	Y gains electron(s) Y is reduced Y is the oxidizing agent Y decreases its oxidation number	

$$
\begin{aligned}
& \mathrm{Cu}(\mathrm{~s})+\mathbf{2 H}_{2} \mathrm{SO}_{4}(\text { aq, conc. }) \rightarrow \\
& 0 \quad+1+6 \text {-2 } \\
& \rightarrow \underset{+2}{\mathbf{C u}^{2+}}+\underset{+6-2}{\mathbf{S O}_{\mathbf{4}}{ }^{2-}}+\underset{+4-2}{\mathbf{S O}_{2}(\mathbf{g})}+\underset{+1}{\mathbf{2 H}_{\mathbf{2}} \mathbf{O}(\mathbf{l})} \\
& \mathrm{Cu} \quad \Rightarrow 0(\text { in } \mathrm{Cu}) \rightarrow+2\left(\text { in } \mathrm{Cu}^{2+}\right) \\
& \mathrm{S} \quad \Rightarrow+6\left(\text { in } \mathrm{H}_{2} \mathrm{SO}_{4}\right) \rightarrow+4\left(\text { in } \mathrm{SO}_{2}\right)
\end{aligned}
$$

$\Rightarrow \mathrm{Cu}$ is oxidized $\Rightarrow \mathrm{Cu}$ is the reducing agent
$\Rightarrow \mathrm{S}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is reduced $\Rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ is the oxidizing agent
$\Rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ oxidizes Cu ; Cu reduces $\mathrm{H}_{2} \mathrm{SO}_{4}$

\Rightarrow calculate the mass of Fe:

$16.7 \times 10^{-3} \mathrm{~L} \times\left(\frac{0.0108 \mathrm{~mol} \mathrm{MnO}_{4}^{-}}{1 \mathrm{~L}}\right) \times\left(\frac{5 \mathrm{~mol} \mathrm{Fe}^{2+}}{1 \mathrm{~mol} \mathrm{MnO}_{4}^{-}}\right)$
$\times\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}^{2+}}{1 \mathrm{~mol} \mathrm{Fe}^{2+}}\right)=0.0504 \mathrm{~g} \mathrm{Fe}^{2+} \rightarrow 0.0504 \mathrm{~g} \mathrm{Fe}$
\Rightarrow calculate the mass\%:
Mass $\% \mathrm{Fe}=\frac{0.0504 \mathrm{~g} \mathrm{Fe}}{0.202 \mathrm{~g} \text { sample }} \times 100 \%=25.0 \%$

- Identification of $\mathrm{Ox} /$ Red agents - need to examine the $\mathrm{Ox} \#$ of all elements in the reaction

Example:

Identify the Ox . and Red. agents in the reaction of Cu with hot, concentrated $\mathbf{H}_{2} \mathrm{SO}_{4}$.
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}($ aq, conc. $) \rightarrow$

$$
\rightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{4}^{2-}+\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Redox titrations

- Use redox reactions

Example:

A 0.202 g sample of iron ore is dissolved in HCl and all of its $\mathbf{F e}$ content is converted to $\mathbf{F e}^{\mathbf{2 +}}$. The resulting solution is titrated with $\mathbf{1 6 . 7} \mathbf{~ m L ~} \mathbf{0 . 0 1 0 8} \mathrm{m}$ $\mathbf{K M n O}_{4}$ solution. Determine the mass\% of Fe in the sample, if the equation of the redox reaction is:
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+\mathbf{8 H}{ }^{+} \rightarrow$

$$
\rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

\Rightarrow mole ratio: $\quad\left[5 \mathrm{~mol} \mathrm{Fe}{ }^{2+} / 1 \mathrm{~mol} \mathrm{MnO}_{4}{ }^{-}\right.$]

4.6 Free Elements in Redox Reactions

- If a reaction involves a free element as either reactant or product, it is a redox reaction
- Combining two elements

Metal + Nonmetal \rightarrow Ionic compound

$$
\underset{0}{2 \mathrm{~K}(\mathrm{~s})}+\underset{0}{\mathrm{~F}_{2}(\mathrm{~g})} \rightarrow \underset{+1-1}{2 \mathrm{KF}(\mathrm{~s})}
$$

Nonmetal + Nonmetal \rightarrow Covalent compound

$$
\underset{0}{\mathbf{H}_{2}(\mathrm{~g})}+\underset{0}{\mathrm{~F}_{2}(\mathrm{~g})} \rightarrow \underset{+1}{\mathbf{2 H F}(\mathrm{~g})}
$$

- Combining compounds and elements

$$
\underset{+4-2}{2 \mathbf{S O}_{\mathbf{2}}(\mathbf{g})}+\underset{0}{\mathbf{O}_{\mathbf{2}}(\mathbf{g})} \rightarrow \underset{+6-2}{\mathbf{2} \mathbf{S O}_{\mathbf{3}}(\mathbf{g})}
$$

- Decomposing compounds into elements
- Thermal decomposition

$$
\underset{+2-2}{2 \mathrm{HgO}_{2}(\mathrm{~s})} \stackrel{\Delta}{\rightarrow} \underset{0}{2 \mathrm{Hg}(\mathrm{l})}+\underset{0}{\mathrm{O}_{2}(\mathrm{~g})}
$$

- Electrolytic decomposition

	Li K Ba Ca Na	Can displace H_{2} from water	- Activity series metals higher in the list are stronger
	$\begin{gathered} \mathbf{M g} \\ \mathbf{A l} \end{gathered}$		reducing agents
	Mn Zn	Can displace H_{2}	and can displace
	Cr	om steam	(reduce) metals
	Fe Cd		lower in the list
	Co Ni Sn Pb	Can displace H_{2} from acid	from their aqueous solutions
	H_{2}		- The most active
	Cu Hg Ag	Cannot displace H_{2} from any source	metals are unstable in water

Example:

Classify the following reactions:
a) $\mathbf{2 H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathbf{3 B a}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$

$$
\rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$>\mathrm{H}_{3} \mathrm{PO}_{4}$ is a weak acid; $\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base
$>$ Products are salt and water
\Rightarrow Neutralization reaction
$>$ The salt is insoluble \rightarrow precipitate
\Rightarrow Precipitation reaction
\Rightarrow Double displacement reaction

- Displacing one element by another $\mathrm{A}+\mathrm{BC} \rightarrow \mathrm{AB}+\mathrm{C} \quad$ (single displacement)
- The activity series of the metals - orders the metals by their ability to displace H or each other from compounds
- Metals displacing hydrogen from acids or $\mathrm{H}_{2} \mathrm{O}$

- Metals displacing each other
$\mathbf{Z n}(\mathrm{s})+\mathbf{2} \mathrm{AgNO}_{\mathbf{3}}(\mathrm{aq}) \rightarrow \mathbf{Z n}\left(\mathrm{NO}_{3}\right)_{\mathbf{2}}(\mathrm{aq})+\mathbf{2 A g}(\mathrm{s})$
$0 \quad+1 \quad+2 \quad 0$
- The activity series of the halogens
- Reactivity decreases down the group (halogens higher in the group are stronger oxidizing agents and can displace (oxidize) halogens lower in the group

$$
\underset{+1-1}{\mathbf{2 K I}(\mathrm{aq})}+\underset{\mathbf{0}}{\mathbf{C l}_{\mathbf{2}}(\mathrm{g})} \rightarrow \underset{+1-1}{\mathbf{2 K C l}(\mathrm{~g})}+\underset{\mathbf{0}}{\mathbf{I}_{\mathbf{2}}(\mathrm{aq})}
$$

- Combustion reactions - combination of elements or compounds with oxygen

$$
\underset{-4+1}{\mathbf{C H}_{\mathbf{4}}(\mathrm{g})}+\underset{\mathbf{0}}{\mathbf{2 \mathrm { O } _ { \mathbf { 2 } }}(\mathrm{g})} \rightarrow \underset{+4-2}{\mathbf{C O}_{\mathbf{2}}(\mathrm{g})}+\underset{+1-2}{\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}(\mathrm{~g})}
$$

b) $\mathbf{2 K}(\mathrm{s})+\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{2 K O H}(\mathrm{aq})+\mathbf{H}_{\mathbf{2}}(\mathrm{g})$
$>$ Free elements involved in the reaction
$>$ Change in $\mathrm{Ox} \#$ of K and H
\Rightarrow Redox reaction
$>\mathrm{K}$ displaces H from water
\Rightarrow Single displacement reaction
c) $2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow$

$$
\rightarrow 2 \mathrm{NaBr}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

> No change in Ox\# of elements
$>\mathrm{HBr}$ is a strong acid, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is a salt of a weak acid
\Rightarrow Gas formation reaction
\Rightarrow Neutralization reaction

