

The Major Classes of Chemical Reactions

4.1 The Role of Water as a Solvent

Water participates actively in the dissolution process

The dissolution process

- **Hydration** (solvation) of the solute particles in solution
 - The solute particles (ions, molecules, ...) are surrounded by water (solvent) molecules
 - The solute particles are evenly spread throughout the solution

- Electrolytes produce ions in solution (resulting solution conducts electricity)
 - Strong electrolytes completely ionize in solution (soluble salts, strong acids and bases such as NaCl, HCl, KOH, ...)
 - Weak electrolytes partially ionize in solution (weak acids and bases such as H_2S , NH_3 , ...)
- **Nonelectrolytes** do not ionize in solution (resulting solution does not conduct electricity)
 - Molecular compounds (except acids and bases) such as H₂O, sugar, acetone, methanol, ...

• The water dipoles surround the ions on the surface of an **ionic** compound and pull them away from the crystal → hydration → electrolyte solution

- The water dipoles surround the molecules on the surface of a covalent compound and interact with the polar bonds in it → hydration →
 - If the molecules do not dissociate (most covalent compounds) → non-electrolytes
 - If the molecules dissociate to ions (for example in acids which contain polar X−H bonds) → electrolytes
- The **solubility** of a compound depends in large part on the relative strengths of the attractive forces between its ions or molecules and the forces of hydration

4.2 Equations for Reactions in Aqueous Solution

• Overall **molecular equation** (all reactants and products in their undissociated form)

 $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$

• **Complete** (total) **ionic equation** (all strong electrolytes are completely dissociated to ions (ionized) in aqueous solutions

 $[NaCl(aq) \rightarrow Na^{+}(aq), Cl^{-}(aq)]$

$$Ag^{+}(aq) + NO_{3}^{-}(aq) + Na^{+}(aq) + CI^{-}(aq) \rightarrow$$
$$\rightarrow AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$$

• For simplicity, we can omit (aq) after the symbols of all ions in aqueous solutions (assume all ions in solution as aqueous)

 $Ag^+ + Cl^- \rightarrow AgCl(s)$

Example:

Write the net ionic equation corresponding to the following molecular equation:

Na₂CO₃(aq) + H₂SO₄(aq) → → Na₂SO₄(aq) + H₂O(l) + CO₂(g) ⇒Complete ionic eq: 2Na⁺ + CO₃²⁻ + 2H⁺ + SO₄²⁻ → → 2Na⁺ + SO₄²⁻ + H₂O(l) + CO₂(g) ⇒Net ionic eq:

 $CO_3^{2-} + 2H^+ \rightarrow H_2O(l) + CO_2(g)$

4.3 Precipitation Reactions

- Formation of an insoluble product (**precipitate**) after mixing of two electrolyte solutions
 - The driving force of precipitation reactions is the elimination of ions from the solution by formation of an insoluble product

Example:

When mercury(I) nitrate and potassium phosphate solutions are mixed, mercury(I) phosphate **precipitates**. Write the net ionic equation.

 $mercury(I) \rightarrow Hg_2^{2+} \rightarrow Hg_2(NO_3)_2$

⇒Skeletal eq:

 $\begin{aligned} \mathrm{Hg}_{2}(\mathrm{NO}_{3})_{2}(\mathrm{aq}) + \mathrm{K}_{3}\mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \\ \rightarrow (\mathrm{Hg}_{2})_{3}(\mathrm{PO}_{4})_{2}(\mathrm{s}) + \mathrm{KNO}_{3}(\mathrm{aq}) \end{aligned}$

Predicting the outcome of precipitation

 Precipitation reactions are classified as double replacement (metathesis) reactions – exchange of ions leads to an insoluble combination of ions

Table 4.1 Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds		Insoluble Ionic Compounds	
1.	All common compounds of Group 1A(1) ions (Li ⁺ , Na ⁺ , K ⁺ , etc.) and ammonium ion (NH ₄ ⁺) are soluble.	1.	All common metal hydroxides are insoluble, <i>except</i> those of Group 1A(1) and the larger members of Group 2A(2)
2.	All common nitrates (NO ₃ ^{$-$}), acetates (CH ₃ COO ^{$-$} or C ₂ H ₃ O ₂ ^{$-$}), and most perchlorates (ClO ₄ ^{$-$}) are soluble.	2.	(beginning with Ca ²⁺). All common carbonates (CO ₃ ²⁻) and phosphates (PO ₄ ³⁻)
3.	All common chlorides (Cl ⁻), bromides (Br ⁻), and iodides (I ⁻) are soluble, <i>except</i> those of Ag^+ , Pb^{2+} , Cu^+ , and Ha^{-2+}	3.	are insoluble, <i>except</i> those of Group 1A(1) and NH_4^+ . All common sulfides are insoluble <i>except</i> those of Group 1A(1). Group 2A(2), and NH_4^+
4.	All common sulfates (SO ₄ ²⁻) are soluble, <i>except</i> those of Ca^{2+} , Sr^{2+} , Ba^{2+} , Ag^+ , Pb^{2+} and Hg_2^{2+} .		IA(1), Oloup 2A(2), and 1414 .

Example:

Predict the outcome of the mixing of silver nitrate and potassium carbonate solutions.

 \Rightarrow Ions present in the solution:

 $Ag^+, NO_3^-, K^+, CO_3^{2-}$

⇒consider all possible combinations of ions to find if an insoluble product can form:

Ag⁺ and CO₃²⁻ form insoluble Ag₂CO₃ ⇒Net ionic eq: $2Ag^+ + CO_3^{2-} \rightarrow Ag_2CO_3(s)$ Note: The net ionic equation can be predicted directly from the formula of the precipitate.

4.4 Acid-Base Reactions Acids - sharp, sour taste; Bases - soapy, bitter taste Arrhenius acids - release hydrogen ions, H⁺(aq) [or H₃O⁺(aq)], in water solutions

- Acidic hydrogen atoms in molecules
 - can be released as H⁺ ions
 - formulas normally begin with the acidic Hs

Examples:

 $\Rightarrow \text{HCl}, \text{H}_2\text{SO}_4, \text{HCN}, \dots$ $\text{HCl}(g) \xrightarrow{\text{H}_2\text{O}} \text{H}^+ + \text{Cl}^ \text{HCl}(g) + \text{H}_2\text{O}(\text{I}) \rightarrow \text{H}_3\text{O}^+ + \text{Cl}^-$

• Arrhenius bases – release hydroxide ions, OH⁻, in water solutions

Examples:

 \Rightarrow NaOH dissolves in water and dissociates to Na⁺ and OH⁻.

NaOH(s) $\xrightarrow{H_2O}$ Na⁺ + OH⁻

 \Rightarrow Ammonia gas, NH₃, dissolves in water and produces NH₄⁺ and OH⁻.

 $NH_3(g) + H_2O(l) \rightarrow NH_4^+ + OH^-$

• Strong acids – almost completely ionized in aqueous solutions

 $\Rightarrow HBr(g) + H_2O(l) \rightarrow H_3O^+ + Br^-$

(~100% ionized)

- The strong acids in aqueous solution are: HCl(aq), HBr(aq), HI(aq), HNO₃, H₂SO₄, HClO₄, and HClO₃
- Weak acids only partially ionized in aqueous solutions (HF, H_2S , organic acids ...)
- $\Rightarrow CH_3COOH(aq) + H_2O(l) \rightarrow \\ \rightarrow H_3O^+ + CH_3COO^- \quad (\sim 1\% \text{ ionized})$
- Strong bases almost completely ionized in aqueous solutions (oxides and hydroxides of alkali and alkaline earth metals)
 ⇒KOH(s) ^{H₂O} K⁺ + OH⁻ (~100% ionized)
 The strong bases in aqueous solution are: Group I hydroxides, Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂
 Weak bases only partially ionized in aqueous solutions (ammonia, amines, ...)
 ⇒NH₃(aq) + H₂O(l) → NH₄⁺ + OH⁻ (~1% ionized)

NeutralizationPro $acid + base \rightarrow salt + water(or other products)$ • N• Salt - an ionic compound with a cation from
the base and an anion from the acid• N $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$ • N• Neutralization reactions are also viewed as
double replacement (metathesis) reactions –
exchange of ions leads to a salt and water
Example: Predict the products of the reaction
between carbonic acid and calcium hydroxide. $\Rightarrow H$ $H_2CO_3(aq) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + 2H_2O$ $\Rightarrow H$

Proton Transfer • Net ionic equations for reactions between strong acids and bases $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$ $H^+ + Cl^- + K^+ + OH^- \rightarrow K^+ + Cl^- + H_2O(l)$ $\Rightarrow H^+ + OH^- \rightarrow H_2O(l)$ $-H^+$ is present in the form of H_3O^+ $\Rightarrow H_3O^+ + OH^- \rightarrow 2H_2O(l)$ Net ionic equation for all strong acid/strong base reactions (transfer of a proton from H_3O^+ to OH⁻)

- The driving force of strong acid-base reactions is the elimination of ions (H^+ and OH^-) from the solution by formation of water
- Net ionic equations for reactions between weak acids and strong bases

Example:

 $HF(aq) + NaOH(aq) \rightarrow NaF(aq) + H_2O(l)$ $HF(aq) \rightarrow weak acid (only partially ionized)$ $HF(aq) + Na^+ + OH^- \rightarrow Na^+ + F^- + H_2O(l)$

 $\Rightarrow HF(aq) + OH^{-} \rightarrow F^{-} + H_2O(l)$

 \Rightarrow transfer of a proton from HF to OH⁻

• Net ionic equations for reactions between strong acids and weak bases

Example:

 $HCl(aq) + NH_{3}(aq) \rightarrow NH_{4}Cl (aq)$ $NH_{3}(aq) \rightarrow weak base (only partially ionized)$ $H^{+} + Cl^{-} + NH_{3}(aq) \rightarrow NH_{4}^{+} + Cl^{-}$ $\Rightarrow H^{+} + NH_{3}(aq) \rightarrow NH_{4}^{+}$ $-H^{+} is present in the form of H_{3}O^{+}$ $\Rightarrow H_{3}O^{+} + NH_{3}(aq) \rightarrow NH_{4}^{+} + H_{2}O(l)$ $\Rightarrow transfer of a proton from H_{3}O^{+} to NH_{3}$

Gas Formation Reactions				
• Reactions of salts of weak or volatile acids with strong acids				
Example:				
$ZnS(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2S(g)$				
$\operatorname{ZnS}(s) + 2\operatorname{H}^+ + 2\operatorname{Cl}^- \rightarrow \operatorname{Zn}^{2+} + 2\operatorname{Cl}^- + \operatorname{H}_2\operatorname{S}(g)$				
$\Rightarrow ZnS(s) + 2H^+ \rightarrow Zn^{2+} + H_2S(g)$				
$-\mathbf{H}^+$ is present in the form of $\mathbf{H_3O^+}$				
$\Rightarrow ZnS(s) + 2H_3O^+ \rightarrow Zn^{2+} + H_2S(g) + 2H_2O(l)$				
\Rightarrow transfer of a proton from H_3O^+ to S^{2-}				

Acid-base titrations

- Titrations use measurements of volumes
- Based on stoichiometric acid-base reactions between the analyzed solution (analyte) and a solution with known concentration (titrant)
- Equivalence point the amount of titrant added is stoichiometrically equivalent to the amount of analyte present in the sample
- **Indicators** change color at the equivalence point (signal the **end point** of the titration)

- The titrant (acid or base) is added slowly to the analyte (base or acid) until the indicator changes color
- At the end point the amount of acid is equivalent to the amount of base – the concentration of the analyte is calculated from the measured volumes of the solutions and the titrant concentration

Example: A 25.0 mL H₂SO₄ solution is titrated with 16.4 mL 0.255 M KOH solution. What is the molarity of the acid solution. \Rightarrow balanced equation: 2KOH(aq) + H₂SO₄(aq) \rightarrow K₂SO₄(aq) + 2H₂O(l) \Rightarrow mole ratio: [1 mol H₂SO₄/2 mol KOH] 16.4 × 10⁻³ L × $\left(\frac{0.255 \text{ mol KOH}}{1 \text{ L}}\right)$ × $\left(\frac{1 \text{ mol H}_2\text{SO}_4}{2 \text{ mol KOH}}\right)$ = = 2.09 × 10⁻³ mol H₂SO₄ $\frac{2.09 \times 10^{-3} \text{ mol H}_2\text{SO}_4}{25.0 \times 10^{-3} \text{ L}}$ = 8.36 × 10⁻² M H₂SO₄

4.5 Redox Reactions

Oxidation and reduction

- Transfer of electrons from one species to another
- Driving force of redox reactions movement of electrons from an atom with less to an atom with more attraction for electrons

 $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$

NaCl is an ionic compound:

 $2Na(s) + Cl_2(g) \rightarrow 2Na^+(s) + 2Cl^-(s)$

Na(s) → Na⁺(s) \Rightarrow loss of 1e⁻ by Na Cl₂(g) → 2Cl⁻(s) \Rightarrow gain of 2e⁻ by Cl₂ Result → transfer of electrons from Na to Cl₂

- Oxidation loss of electrons (Na is oxidized)
 - term originates from reactions of substances with oxygen
- **Reduction** gain of electrons (Cl₂ is reduced)
 - term originates from reactions of metal oxides with C, CO, H₂, etc. to extract (reduce) the pure metal
- Oxidation and reduction can not occur independently
 - electrons gained by one species must be lost by another (e⁻ gained by Cl₂ are lost by Na)
 - $-Cl_2$ oxidizes Na and Na reduces Cl_2

• The transfer of electrons during redox reactions is not always complete

 $2\mathrm{H}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) \rightarrow 2\mathrm{H}_2\mathrm{O}(\mathrm{l})$

 H_2O is a covalent compound with polar bonds in which the electrons are not shared equally

$H^{\delta+} - O^{\delta-} - H^{\delta+}$

 \Rightarrow Electrons are shifted from H to O

 $H \to H^{\delta +} \quad \Rightarrow \text{loss of } e^{-} \text{ density by } H$

 $O \to O^{\delta -} \quad \Rightarrow gain \text{ of } e^{\text{-}} \text{ density by } O$

Result \rightarrow incomplete transfer of electrons from H to O

Oxidation Numbers (Ox#)

Oxidation number (oxidation state) – the charge an atom would have if the e⁻s in polar bonds are not shared but are transferred completely to the atom with more attraction for e⁻s

 Assigned to each element in a substance

 Oxidation numbers can help determine whether substances are oxidized or reduced

 Oxidation – increase in Ox#
 Reduction – decrease in Ox#
 Na(s) → Na⁺(s) ⇒ Ox# increases (0 → +1)

 $\operatorname{Cl}_2(g) \rightarrow 2\operatorname{Cl}^-(s) \Rightarrow \operatorname{Ox\#} \operatorname{decreases} (0 \rightarrow -1)$

Rules for assigning Ox#
Monoatomic ions → Ox# = charge of ion
Free elements → Ox# = 0
F → Ox# = -1
O → Ox# = -2 (except in combination with F and in peroxides)
H → Ox# = +1 (in combination with nonmetals)
→ Ox# = -1 (in combination with metals)
Halogens → Ox# = -1 (except in comb. with O or

- other halogen higher in the group)
- The **sum of Ox#** of all elements in a species equals the **charge** of the species

Example:

Assign the oxidation numbers of all elements in NO_3^- and $HClO_3$.

NO₃⁻ ⇒ O (-2) by rule 3×(-2) + 1×(X) = -1 ⇒ X = +5 ⇒ N (+5)

 $HClO_3 \Rightarrow O (-2) \text{ by rule}$ $\Rightarrow H (+1) \text{ by rule}$ 3×(-2) + 1×(+1) + 1×(X) = 0 $\Rightarrow X = +5 \Rightarrow Cl (+5)$

- Oxidizing agent causes oxidation (removes electrons from the species being oxidized)
 - is the species being reduced
 - contains an element which undergoes a decrease in Ox# (reduction)
- **Reducing agent** causes reduction (supplies electrons to the species being reduced)
 - $-\operatorname{is}$ the species $\operatorname{\boldsymbol{being}}$ oxidized
 - contains an element which undergoes an increase in Ox# (oxidation)

Transfer or shift of electrons		
X loses electron(s)	Y gains electron(s)	
X is oxidized	Y is reduced	
X is the reducing agent	Y is the oxidizing agent	
X increases its oxidation number	Y decreases its oxidation number	

• Identification of Ox/Red agents – need to examine the Ox# of all elements in the reaction

Example:

Identify the Ox. and Red. agents in the reaction of Cu with hot, concentrated H_2SO_4 .

 $\begin{aligned} \mathrm{Cu}(\mathrm{s}) + 2\mathrm{H}_2\mathrm{SO}_4(\mathrm{aq,conc.}) \rightarrow \\ \rightarrow \mathrm{Cu}^{2+} + \mathrm{SO}_4^{2-} + \mathrm{SO}_2(\mathrm{g}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{I}) \end{aligned}$

$$\begin{array}{l} Cu(s) + 2H_2SO_4(aq,conc.) \rightarrow \\ 0 & +1 +6 -2 \\ & \rightarrow Cu^{2+} + SO_4^{2-} + SO_2(g) + 2H_2O(l) \\ & +2 & +6 -2 & +4 -2 & +1 -2 \end{array}$$

$$\begin{array}{l} Cu & \Rightarrow 0 (in Cu) \rightarrow +2 (in Cu^{2+}) \\ S & \Rightarrow +6 (in H_2SO_4) \rightarrow +4 (in SO_2) \end{array}$$

$$\Rightarrow Cu \text{ is oxidized} \Rightarrow Cu \text{ is the reducing agent} \\ \Rightarrow S in H_2SO_4 \text{ is reduced} \Rightarrow H_2SO_4 \text{ is the oxidizing agent} \\ \Rightarrow H_2SO_4 \text{ oxidizes Cu; Cu reduces } H_2SO_4 \end{array}$$

Redox titrations

• Use redox reactions

Example:

A 0.202 g sample of iron ore is dissolved in HCl and all of its Fe content is converted to Fe^{2+} . The resulting solution is titrated with 16.7 mL 0.0108 M KMnO₄ solution. Determine the mass% of Fe in the sample, if the equation of the redox reaction is:

 $5Fe^{2+} + MnO_4^{-} + 8H^+ \rightarrow$

 \Rightarrow mole ratio: [5 mol Fe²⁺/1 mol MnO₄⁻]

4.6 Free Elements in Redox Reactions • If a reaction involves a free element as either reactant or product, it is a redox reaction • Combining two elements Metal + Nonmetal \rightarrow Ionic compound $2K(s) + F_2(g) \rightarrow 2KF(s)$ 0 0 +1 -1Nonmetal + Nonmetal \rightarrow Covalent compound $H_2(g) + F_2(g) \rightarrow 2HF(g)$ 0 0 +1 -1

	Li K Ba Ca Na	Can displace H ₂ from water	• Activity series – metals higher in the list are stronger
th as reducing agent	Mg Al Mn Zn Cr Fe Cd	Can displace H ₂ from steam	reducing agents and can displace (reduce) metals lower in the list
Streng	Co Ni Sn Pb	Can displace H ₂ from acid	from their aqueous solutions
	H ₂		• The most active
	Cu Hg Ag	Cannot displace H ₂ from any source	metals are unstable in water

. .

. .

$2K(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2(g)$			
Free elements involved in the reaction			
Change in Ox# of K and H			
Redox reaction			
K displaces H from water			
\Rightarrow Single displacement reaction			
$2\text{HBr(aq)} + \text{Na}_2\text{CO}_3(\text{aq}) \rightarrow$			
$\rightarrow 2NaBr(aq) + CO_2(g) + H_2O(l)$			
No change in Ox# of elements			
HBr is a strong acid, Na ₂ CO ₃ is a salt of a weak acid			
Gas formation reaction			
Noutralization reaction			