

- Molecular model of the gaseous state
- Molecules are in constant, rapid, random motion (explains the absence of definite shape, miscibility, low viscosity)
- Molecules are widely separated (explains the absence of definite volume, low density, compressibility)

5.2 Pressure

- Gas molecules collide with each other an the walls of the container \rightarrow molecules exert force on the walls

Pressure $=\frac{\text { Force }}{\text { Area }}$ $P=\frac{F}{A}$
g - acceleration of free fall $\left(\mathbf{9 . 8 1} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}\right)$
\boldsymbol{d} - density of $\mathrm{Hg}\left(\mathbf{1 3 5 4 6} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}\right)$
V - volume of Hg column
\boldsymbol{h} - height of Hg column ($\mathbf{0 . 7 6 0} \mathbf{~ m}$ at sea level)
\boldsymbol{A} - area of Hg column base

$$
\begin{array}{cl}
P_{a t m}= & P_{H g}=\frac{F}{A} \\
m_{H g}= & d V=d h A \quad F=m_{H g} g \\
\Rightarrow \quad F=d h A g
\end{array}
$$

$$
P_{a t m}=13546 \times 0.760 \times 9.81=1.01 \times 10^{5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2}
$$

Gases and the Kinetic Molecular Theory

- Importance in atmospheric phenomena, gas phase reactions, combustion engines, etc.

5.1 The Physical States of Matter

- The condensed states - liquid and solid
- The gaseous state
- Gas volume changes greatly with pressure
- Gas volume changes greatly with temperature
- Gases have low viscosity (flow easily)
- Gases have low density (~ 1000 times lower than liquids and solids)
- Gases are miscible in all proportions
- Atmospheric pressure $\left(\boldsymbol{P}_{\text {atm }}\right)$ - caused by the gravitational pull of the Earth \rightarrow molecules exert force on all objects
$>$ Barometers - measur the atmospheric pressure (Torricelli)
- no pressure above the mercury column (vacuum)
- the weight of the Hg column balances $\boldsymbol{P}_{\boldsymbol{a t m}}$
- the height of the Hg column is proportional to $\boldsymbol{P}_{\text {atm }}$
Barometers - measure ${ }_{\text {mercury }}^{\text {above }}$

Units of Pressure

- SI unit \rightarrow pascal (Pa)
$1 \mathbf{P a}=1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}^{2}$
$P_{\text {atm }}=1.01 \times 10^{5} \mathrm{~Pa} \quad$ (at sea level)
- Conventional units:

$$
\begin{aligned}
& \mathrm{atm} \rightarrow \mathbf{1} \mathbf{~ a t m}=\mathbf{1 0 1 3 2 5} \mathbf{~ P a} \text { (exactly) } \\
& \text { bar } \rightarrow \mathbf{1} \mathbf{~ b a r}=\mathbf{1 0 0 0 0 0} \mathbf{~ P a} \text { (exactly) } \\
& \text { torr } \rightarrow \mathbf{7 6 0} \mathbf{~ T o r r}=\mathbf{1} \mathbf{~ a t m} \text { (exactly) } \\
& \mathrm{mm} \mathrm{Hg} \rightarrow \mathbf{1} \mathbf{~ m m H g}=\mathbf{1} \mathbf{~ T o r r} \\
& \mathrm{lb} / \mathrm{in}^{2} \rightarrow \mathbf{1 4 . 7} \mathbf{~ \mathbf { ~ b b }} / \mathbf{i n}^{\mathbf{2}}=\mathbf{1} \mathbf{~ a t m}
\end{aligned}
$$

5.3 The Gas Laws

- Relate the parameters of the gaseous state pressure, volume, temperature, and number of moles

Boyle's Law

- At constant temperature (T) the pressure (P) of a fixed amount of gas is inversely proportional to its volume (V)
\Rightarrow At constant T and n :
$P=\frac{\boldsymbol{k}}{\boldsymbol{V}} \quad \boldsymbol{k} \rightarrow$ constant (depends on \boldsymbol{T} and \boldsymbol{n})
$\boldsymbol{P V}=\boldsymbol{k}=\mathbf{c o n s t a n t} \quad \mathbf{V} \downarrow \Leftrightarrow \mathbf{P} \uparrow$
- Assume two states of a gas at constant \boldsymbol{T}
- state $1 \rightarrow \boldsymbol{P}_{1}, V_{1}$
- state $2 \rightarrow P_{2}, V_{2}$

$$
\begin{gathered}
P_{1} V_{1}=k \quad P_{2} V_{2}=k \\
P_{1} V_{1}=P_{2} V_{2}
\end{gathered}
$$

Example: A 2.0 L sample of oxygen at 10 atm is transferred to a 15.0 L container at constant temperature. What is the new pressure? $V_{1}=2.0 \mathrm{~L} \quad P_{1}=10 \mathrm{~atm} \quad V_{2}=15.0 \mathrm{~L} \quad P_{2}=$?

$$
P_{2}=\frac{P_{1} V_{1}}{V_{2}}=\frac{10 \mathrm{~atm} \times 2.0 \mathrm{~L}}{15.0 \mathrm{~L}}=1.3 \mathrm{~atm}
$$

Example:

Convert 630.0 Torr to atmospheres and kilopascals.
630.0 Torr $\times\left(\frac{1 \mathrm{~atm}}{760 \text { Torr }}\right)=0.8289 \mathrm{~atm}$
630.0 Torr $\times\left(\frac{1 \mathrm{~atm}}{760 \mathrm{Torr}}\right) \times\left(\frac{101325 \mathrm{~Pa}}{1 \mathrm{~atm}}\right)$
$=8.399 \times 10^{4} \mathrm{~Pa}=83.99 \mathrm{kPa}$

Charles's Law

- At constant pressure (P) the volume (V) of a fixed amount of gas is proportional to its absolute temperature (T)
\Rightarrow At constant P and n :
$V=k^{\prime} T \quad \boldsymbol{k}^{\prime} \rightarrow$ constant (depends on P and \boldsymbol{n})

$$
\frac{V}{T}=k^{\prime} \quad T \uparrow \Leftrightarrow V \uparrow
$$

- Charles's law helped devise the absolute temperature scale (Lord Kelvin)

Variations of Charles's law - Amontons's law

- At constant volume (V) the pressure (P) of a fixed amount of gas is proportional to its absolute temperature (T)
\Rightarrow At constant V and n :
$\boldsymbol{P}=\boldsymbol{k}^{\prime \prime} \boldsymbol{T}$
$k^{\prime \prime} \rightarrow$ constant (depends on V and n)

$$
\frac{P}{T}=k^{\prime \prime} \quad T \uparrow \Leftrightarrow \uparrow
$$

Avogadro's Law

- At constant temperature (T) and pressure (P) the volume (V) of a gas is proportional to its amount (n)
- At constant T and P :

$$
\begin{array}{cc}
V=k^{\prime \prime \prime} n & \left.k^{\prime \prime \prime} \rightarrow \text { constant (depends on } T, P\right) \\
\frac{V}{n}=k^{\prime \prime \prime} & n \uparrow \Leftrightarrow V \uparrow
\end{array}
$$

- Molar volume $\left(V_{m}\right)$ - the volume of one mole of a substance

$$
V_{m}=V / n
$$

- Assume two states of a gas at constant \boldsymbol{P}

$$
\begin{aligned}
& - \text { state } 1 \rightarrow T_{1}, V_{1} \\
& \text { - state } 2 \rightarrow T_{2}, V_{2} \\
& \frac{V_{1}}{T_{1}}=k^{\prime} \quad \frac{V_{2}}{T_{2}}=k^{\prime} \quad \Rightarrow \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
\end{aligned}
$$

Example: A balloon is filled with 5.0 L He gas at $15^{\circ} \mathrm{C}$. The temperature is changed to $35^{\circ} \mathrm{C}$. What is the new volume of the balloon?
$T_{1}=15^{\circ} \mathrm{C}=288 \mathrm{~K} \quad V_{1}=5.0 \mathrm{~L}$
$T_{2}=35^{\circ} \mathrm{C}=308 \mathrm{~K} \quad V_{2}=$?

$$
V_{2}=\frac{V_{1} T_{2}}{T_{1}}=\frac{5.0 \mathrm{~L} \times 308 \mathrm{~K}}{288 \mathrm{~K}}=5.3 \mathrm{~L}
$$

- Assume two states of a gas at constant \boldsymbol{V}
- state $1 \rightarrow \boldsymbol{T}_{1}, \boldsymbol{P}_{1}$
- state $2 \rightarrow \boldsymbol{T}_{2}, \boldsymbol{P}_{2}$

$$
\frac{P_{1}}{T_{1}}=k^{\prime \prime} \quad \frac{P_{2}}{T_{2}}=k^{\prime \prime} \quad \Rightarrow \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

Example: A cylinder containing N_{2} gas at $15^{\circ} \mathrm{C}$ and 50 atm is moved to a new location at $35^{\circ} \mathrm{C}$. What is the new pressure in the cylinder?

$$
\begin{aligned}
& T_{1}=15^{\circ} \mathrm{C}=288 \mathrm{~K} P_{1}=50 \mathrm{~atm} \\
& T_{2}=35^{\circ} \mathrm{C}=308 \mathrm{~K} P_{2}=? \\
& P_{2}=\frac{P_{1} T_{2}}{T_{1}}=\frac{50 \mathrm{~atm} \times 308 \mathrm{~K}}{288 \mathrm{~K}}=53 \mathrm{~atm}
\end{aligned}
$$

- Avogadro's principle

- At constant T and P equal number of moles of different gases occupy equal volumes
- Molar volumes of gases are very similar ($V / n=$ constant)
- Assume two states of a gas at constant \boldsymbol{T} and \boldsymbol{P}

$$
\text { - state } 1 \rightarrow \boldsymbol{V}_{1}, \boldsymbol{n}_{1}
$$

- state $2 \rightarrow \boldsymbol{V}_{2}, \boldsymbol{n}_{2}$
$\frac{V_{1}}{n_{1}}=k^{\prime \prime \prime} \quad \frac{V_{2}}{n_{2}}=k^{\prime \prime \prime} \Rightarrow \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$

The Ideal Gas Law

$$
\begin{array}{ll}
V=\boldsymbol{k} \frac{1}{P} & \\
\text { Boyle's Law } \\
V=\boldsymbol{k}^{\prime} T & \\
V=\boldsymbol{k}^{\prime \prime \prime} n & \\
\text { Charles's Law } \\
\text { Avogadro's Law }
\end{array}
$$

- Combination of the three laws:
$V=R \frac{n T}{P} \quad R$-proportionality constant

$$
P V=n R T \quad \rightarrow \quad \text { ideal gas law }
$$ $R \rightarrow$ universal gas constant

- Ideal gas - obeys the ideal gas law
- \boldsymbol{R} is determined experimentally

$$
\begin{aligned}
& \boldsymbol{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K} \\
& \boldsymbol{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

- Assume two states of a gas
- state $1 \rightarrow \boldsymbol{P}_{1}, V_{1}, \boldsymbol{n}_{1}, \boldsymbol{T}_{1}$
- state $2 \rightarrow \boldsymbol{P}_{2}, \boldsymbol{V}_{2}, \boldsymbol{n}_{2}, \boldsymbol{T}_{2}$
$\frac{P_{1} V_{1}}{n_{1} T_{1}}=R \quad \frac{P_{2} V_{2}}{n_{2} T_{2}}=R \quad \Rightarrow \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$
Note: T must always be in Kelvin

Example: A 3.0 g sample of methane, CH_{4}, is placed in a 2.0 L container at $22^{\circ} \mathrm{C}$. What is the pressure in the container?
$\boldsymbol{P V}=\boldsymbol{n R T}$
$V=2.0 \mathrm{~L} \quad T=22^{\circ} \mathrm{C}=295 \mathrm{~K}$
moles of $\mathrm{CH}_{4}(\boldsymbol{n})$:
$n=3.0 \mathrm{~g} \mathrm{CH}_{4} \times\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.0 \mathrm{~g} \mathrm{CH}_{4}}\right)=0.19 \mathrm{~mol} \mathrm{CH}_{4}$
$P=\frac{n R T}{V}=\frac{0.19 \mathrm{~mol} \times 0.08206}{\frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 295 \mathrm{~K}}=2.3 \mathrm{~atm}$

Example: A 5.0 L gas sample at 1.0 atm and $10^{\circ} \mathrm{C}$ is moved to a 2.0 L container and heated to $300^{\circ} \mathrm{C}$. What is the new pressure?
$P_{1}=1.0 \mathrm{~atm} \quad V_{1}=5.0 \mathrm{~L} \quad T_{1}=10^{\circ} \mathrm{C}=283 \mathrm{~K}$
$P_{2}=$? $\quad V_{2}=2.0 \mathrm{~L} \quad T_{2}=300^{\circ} \mathrm{C}=573 \mathrm{~K}$ $n_{1}=n_{2}$
$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \quad \Rightarrow \quad P_{2}=\frac{P_{1} V_{1}}{n_{1} T_{1}} \times \frac{n_{2} T_{2}}{V_{2}}$
$P_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}}=\frac{1.0 \mathrm{~atm} \times 5.0 \mathrm{~L} \times 573 \mathrm{~K}}{283 \mathrm{~K} \times 2.0 \mathrm{~L}}=5.1 \mathrm{~atm}$

Standard conditions

- Standard temperature and pressure (STP)

$$
P=1 \mathrm{~atm} ; T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}
$$

- The molar volume of the ideal gas at STP

$$
\begin{gathered}
V_{m}=\frac{V}{n}=\frac{n R T / P}{n}=\frac{R T}{P} \\
V_{m}=\frac{R T}{P}=\frac{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273.15 \mathrm{~K}}{1 \mathrm{~atm}}=22.41 \frac{\mathrm{~L}}{\mathrm{~mol}}
\end{gathered}
$$

5.4 Applications of the Ideal Gas Law

The molar mass and density of gasses
density $=\frac{\text { mass }}{\text { volume }} \rightarrow \boldsymbol{d}=\frac{\boldsymbol{m}}{\boldsymbol{V}}$
molar mass $=\frac{\text { mass }}{\text { moles }} \quad \rightarrow M=\frac{m}{n} \quad \rightarrow m=n M$
$P V=n R T \quad \rightarrow n=\frac{P V}{R T}$
$d=\frac{m}{V}=\frac{n M}{V}=\frac{P V M}{R T V} \rightarrow d=\frac{M P}{R T} \rightarrow M=\frac{d R T}{P}$

			- Finding the molar mass of a volatile liquid - Weigh a flask with a known volume - Fill the flask with the vapors of the volatile liquid at a known temperature and pressure - Cool the flask and let the vapors condense - Reweigh the flask to get
	(0) Heat		the mass of the vapors

Mixtures of Gasses

- Mixtures are treated just like pure gases same gas laws apply
- Partial pressure of a gas in a mixture - the pressure the gas would exert if it occupied the container alone
- Dalton's law of partial pressures - the total pressure (\boldsymbol{P}) of a gaseous mixture is the sum of the partial pressures $\left(\boldsymbol{P}_{\boldsymbol{i}}\right)$ of its components

$$
\boldsymbol{P}=\boldsymbol{P}_{\boldsymbol{A}}+\boldsymbol{P}_{\boldsymbol{B}}+\ldots \text { or } \quad \boldsymbol{P}=\Sigma \boldsymbol{P}_{\boldsymbol{i}}
$$

- The density of a gas is proportional to its molar mass and pressure and inversely proportional to its temperature
Example: Calculate the density of O_{2} at STP .
$M=32.00 \mathrm{~g} / \mathrm{mol}$
$P=1 \mathrm{~atm} \quad T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
$d=\frac{M P}{R T}=\frac{32.00 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 1 \mathrm{~atm}}{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273.15 \mathrm{~K}}=1.428 \frac{\mathrm{~g}}{\mathrm{~L}}$

Example: Calculate the molar mass of a liquid if $\mathbf{0 . 9 5 5} \mathbf{g}$ of its vapors occupy $\mathbf{2 . 5 0} \mathbf{L}$ at $200^{\circ} \mathrm{C}$ and 45.0 Torr.
$d=m / V=0.955 \mathrm{~g} / 2.50 \mathrm{~L}=0.382 \mathrm{~g} / \mathrm{L}$
$T=200^{\circ} \mathrm{C}=473 \mathrm{~K}$
$P=45.0$ Torr $\times[1 \mathrm{~atm} / 760 \mathrm{Torr}]=0.0592 \mathrm{~atm}$
$M=\frac{d R T}{P}=\frac{0.382 \frac{\mathrm{~g}}{\mathrm{~L}} \times 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 473 \mathrm{~K}}{0.0592 \mathrm{~atm}}=250 \frac{\mathrm{~g}}{\mathrm{~mol}}$

- Mole fraction $\left(\chi_{i}\right)$ of a gas in a mixture - a fraction of the total number of moles that belongs to that gas

$$
\chi_{i}=\frac{n_{i}}{\sum n_{i}}=\frac{n_{i}}{n} \quad \sum n_{i}=n \quad \sum \chi_{i}=1
$$

- The sum of all mol fractions is equal to one
- The ideal gas law can be written for each gas in a mixture in terms of partial pressures

$$
P_{i} V=n_{i} R T \quad P V=n R T
$$

$$
\begin{aligned}
& \frac{P_{i} V}{P V}=\frac{n_{i} R T}{n R T} \quad \frac{P_{i}}{P}=\frac{n_{i}}{n}=\chi_{i} \\
& P_{i}=\chi_{i} P
\end{aligned}
$$

\Rightarrow The partial pressure of a gas is proportional to its mol fraction

$$
\begin{gathered}
\chi_{H e}=\frac{\boldsymbol{n}_{H e}}{\boldsymbol{n}_{H e}+\boldsymbol{n}_{N e}}=\frac{0.25}{0.25+0.099}=0.72 \\
\chi_{N e}=\frac{\boldsymbol{n}_{N e}}{\boldsymbol{n}_{H e}+\boldsymbol{n}_{N e}}=\frac{0.099}{0.25+0.099}=\mathbf{0 . 2 8} \\
\boldsymbol{n}=\mathbf{0 . 2 5}+\mathbf{0 . 0 9 9}=\mathbf{0 . 3 5} \mathrm{mol} \\
\boldsymbol{P V}=\boldsymbol{n R T} \quad \rightarrow \quad P=\frac{\boldsymbol{n R T}}{\boldsymbol{V}}
\end{gathered}
$$

$$
\begin{aligned}
P & =\frac{n R T}{V}= \\
= & \frac{0.35 \mathrm{~mol} \times 0.08206}{} \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 293 \mathrm{~K} \\
= & 2.0 \mathrm{~L}
\end{aligned}=
$$

Example: Calculate the total pressure and the partial pressures of He and Ne in a $\mathbf{2 . 0} \mathbf{L}$ mixture containing $\mathbf{1 . 0} \mathbf{g ~ H e}$ and $\mathbf{2 . 0} \mathbf{g ~ N e}$ at $20^{\circ} \mathrm{C}$.
grams of He and $\mathrm{Ne} \rightarrow$ moles of He and $\mathrm{Ne} \rightarrow$ mole fractions of He and Ne
total pressure \rightarrow partial pressures

$$
\begin{aligned}
& 1.0 \mathrm{~g} \mathrm{He} \times\left(\frac{1 \mathrm{~mol} \mathrm{He}}{4.00 \mathrm{~g} \mathrm{He}}\right)=0.25 \mathrm{~mol} \mathrm{He} \\
& 2.0 \mathrm{~g} \mathrm{Ne} \times\left(\frac{1 \mathrm{~mol} \mathrm{Ne}}{20.18 \mathrm{~g} \mathrm{Ne}}\right)=0.099 \mathrm{~mol} \mathrm{Ne}
\end{aligned}
$$

Example: A 2.5 L sample of O_{2} gas was collected over water at $26^{\circ} \mathrm{C}$ and 745 torr atmospheric pressure. What is the mass of O_{2} in the sample? (The vapor pressure of water at $26^{\circ} \mathrm{C}$ is $\mathbf{2 5}$ torr.)
$P_{\text {oxygen }}=P_{\text {total }}-P_{\text {water }}=745-25=\mathbf{7 2 0}$ torr
$T=26+273.15=299 \mathrm{~K}$
$n_{O_{2}}=\frac{P_{O_{2}} V}{R T}=\frac{720 \text { torr } \times\left(\frac{1 \text { atm }}{760 \text { torr }}\right) \times 2.5 \mathrm{~K}}{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 299 \mathrm{~K}}=0.097 \mathrm{~mol}$
$0.097 \mathrm{~mol} \mathrm{O} 2 \times\left(\frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=3.1 \mathrm{~g} \mathrm{O}_{2}$

Stoichiometry and the Ideal Gas Law

- The volume ratios of gases in reactions are the same as their mole ratios (follows from Avogadro's principle)

$$
\mathbf{3} \mathbf{H}_{2}(\mathrm{~g})+\mathrm{N}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

$\Rightarrow 3 \mathrm{~mol} \mathrm{H}_{2}$ react with $\mathbf{1 ~ m o l ~} \mathrm{N}_{2}$
$\Rightarrow \mathbf{3} \mathrm{L} \mathrm{H}_{2}$ react with $\mathbf{1} \mathrm{L} \mathrm{N}_{2}$
Example: How many liters of N_{2} are needed to react completely with $5.0 \mathrm{~L} \mathrm{H}_{2}$?

$$
5.0 \mathrm{~L} \mathrm{H}_{2} \times\left[1 \mathrm{~L} \mathrm{~N}_{2} / 3 \mathrm{~L} \mathrm{H}_{2}\right]=1.7 \mathrm{~L} \mathrm{~N}_{2}
$$

Example: Calculate the volume of CO_{2} produced by the decomposition of $\mathbf{2 . 0} \mathbf{g}$ CaCO_{3} at $\mathbf{2 5}^{\circ} \mathrm{C}$ and 1.0 atm.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$2.0 \mathrm{~g} \mathrm{CaCO}_{3} \times\left(\frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{100.1 \mathrm{~g} \mathrm{CaCO}_{3}}\right) \times\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}\right)$
$=0.020 \mathrm{~mol} \mathrm{CO}_{2}$
$V=\frac{n R T}{P}=\frac{0.020 \mathrm{~mol} \times 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 298 \mathrm{~K}}{1.0 \mathrm{~atm}}$ $=0.49 \mathrm{~L}$

5.5 The Kinetic Molecular Theory

- Postulates of the Kinetic Molecular Theory
- The gas particles are negligibly small (their volume can be neglected)
- The gas particles are in constant, random motion and move in straight lines until they collide
- The gas particles do not interact except during collisions. The collisions are elastic so there is no loss of energy due to friction
- The average kinetic energy of gas particles, $\overline{\boldsymbol{E}}_{\boldsymbol{k}}$, is proportional to the absolute temperature, \boldsymbol{T}
- The ideal gas law can be used to convert between the number of moles of gaseous reactants (or products) and their volumes at certain T and P

Example: Calculate the mass of NaN_{3} needed to produce 10 L of N_{2} in an air bag at $25^{\circ} \mathrm{C}$ and 1.0 atm by the reaction:

$$
\begin{aligned}
& \begin{array}{l}
6 \mathrm{NaN}_{3}(\mathrm{~s})+2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 3 \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})+4 \mathrm{Fe}(\mathrm{~s})+9 \mathrm{~N}_{2}(\mathrm{~g}) \\
T=298 \mathrm{~K} \quad P \quad P=1 \mathrm{~atm} \quad V=10 \mathrm{~L} \quad n=? \\
n=\frac{P V}{R T}=\frac{1 \mathrm{~atm} \times 10 \mathrm{~L}}{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 298 \mathrm{~K}}=0.41 \mathrm{~mol} \\
0.41 \mathrm{~mol} \mathrm{~N}_{2}\left(\frac{6 \mathrm{~mol} \mathrm{NaN}_{3}}{9 \mathrm{~mol} \mathrm{~N}_{2}}\right)\left(\frac{65.02 \mathrm{~g} \mathrm{NaN}_{3}}{1 \mathrm{~mol} \mathrm{NaN}_{3}}\right)
\end{array} \\
& \quad=18 \mathrm{~g} \mathrm{NaN}_{3}
\end{aligned}
$$

- A molecular view of the gas laws
- Boyle's law $(V \propto 1 / P)$

- Average kinetic energy of the gas particles

$$
\begin{aligned}
& \bar{E}_{k} \propto T \\
& \bar{E}_{k}=\frac{1}{2} m \overline{u^{2}} \\
& \Rightarrow \overline{u^{2}} \propto T
\end{aligned}
$$

$\underline{\boldsymbol{m}}$ - mass of particles
$\overline{\boldsymbol{u}^{2}}$ - average square speed

- Root-mean-square speed of the gas particles

$$
\begin{aligned}
& \boldsymbol{u}_{r m s}= \sqrt{\overline{\boldsymbol{u}^{2}}} \\
& \boldsymbol{u}_{r m s}=\sqrt{\frac{3 R T}{M}}
\end{aligned}
$$

The Maxwell Distribution of Speeds

- Gives the fraction of particles moving at each particle speed
- Gas molecules travel with a wide range of speeds with a bell-shaped distribution
- The most probable speed, the average speed and the root-mean-square speed are very close in magnitude

Example: Calculate the root-mean-square speed of N_{2} at $25^{\circ} \mathrm{C}$.

$$
T=25^{\circ} \mathrm{C}=298 \mathrm{~K}
$$

$$
M=28.02 \mathrm{~g} / \mathrm{mol}=0.02802 \mathrm{~kg} / \mathrm{mol}
$$

$$
R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

$u_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 \times 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 298 \mathrm{~K}}{0.02802 \frac{\mathrm{~kg}}{\mathrm{~mol}}}}=515 \sqrt{\frac{\mathrm{~J}}{\mathrm{~kg}}}$
$515 \sqrt{\frac{\mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}}{\mathrm{~kg}}}=515 \sqrt{\frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}=515 \frac{\mathrm{~m}}{\mathrm{~s}}$

- The range of speeds widens and $\boldsymbol{u}_{r m s}$ increases with decreasing the molar mass of the gas
- Lighter gases have higher molecular speeds

Diffusion and Effusion

- Diffusion - gradual dispersal of one substance through another
- gases diffuse from places with high to places with low concentration
- Effusion - escape of a substance through a small hole into vacuum
- effusion through porous materials, pin holes, cracks, etc.
- The meaning of temperature
$\bar{E}_{k}=\frac{1}{2} m \overline{u^{2}}=\frac{1}{2} m u_{r m s}^{2}=\frac{1}{2} m\left(\frac{3 R T}{M}\right)=\frac{m 3 R T}{2 m N_{A}}$
$\bar{E}_{k}=\frac{3 R T}{2 N_{A}} \quad$ and $\quad u_{r m s}=\sqrt{\frac{3 R T}{M}}$
$\Rightarrow u_{r m s}$ depends on T and M
$\Rightarrow \quad \bar{E}_{k}$ depends only on T
$\Rightarrow T$ is a measure of the average kinetic energy of the molecular motion
- Graham's Law - the effusion rate (ER) of a gas is inversely proportional to the square root of its molar mass (same relation is valid in general for the diffusion rate)

$$
E R \propto \sqrt{\frac{1}{M}}
$$

- Can be explained with $\boldsymbol{u}_{\boldsymbol{r m s}}=\sqrt{ } \mathbf{3} \boldsymbol{R} \boldsymbol{T} / \boldsymbol{M}$
- The time of effusion $\left(\boldsymbol{t}_{e f f}\right)$ is inversely proportional to $\boldsymbol{E R}$

$$
t_{e f f} \propto \frac{1}{E R} \Rightarrow t_{e f f} \propto \sqrt{M}
$$

5.6 Real Gases

- Real gases deviate from ideal behavior
- Compression factor (\boldsymbol{Z})

$$
Z=P V / n R T
$$

- For ideal gases:

$$
P V=n R T \quad \Rightarrow \quad Z=P V / n R T=1
$$

- A plot of \boldsymbol{Z} versus \boldsymbol{P} gives a straight line for ideal gases, but not for real gases

- Van der Waals equation:

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

$\boldsymbol{a}, \boldsymbol{b}$ - van der Waals constants (zero for ideal gases)
$\boldsymbol{a} \boldsymbol{n}^{2} / \boldsymbol{V}^{2}$ - pressure correction (\boldsymbol{a} depends on the attractive forces between molecules)
$\boldsymbol{n} \boldsymbol{b}$ - volume correction (\boldsymbol{b} is a measure for the actual volume of the gas molecules)

- Real gases approach ideal behavior at low pressures and high temperatures (away from conditions of condensation)
conditions of condensation)
- Negative deviations - important at moderately high pressures $(\boldsymbol{P V} / \boldsymbol{n} \boldsymbol{R T}<\mathbf{1})$
- Due to attractive forces between the molecules
- The molecules attract each other and impact the walls with a weaker force (\boldsymbol{P} and \boldsymbol{Z} decrease)
- Positive deviations - important at very high pressures $(\boldsymbol{P V} / \boldsymbol{n} \boldsymbol{R} \boldsymbol{T}>\mathbf{1})$
- Due to the actual volume of the molecules
- The physical volume of the molecules reduces the free volume in the container, but we still use the volume of the entire container, \boldsymbol{V}, which is larger than the free volume (\boldsymbol{Z} increases)

