

- The total energy $\left(\boldsymbol{E}_{\text {tot }}\right)$ is the sum of kinetic and potential energies

$$
E_{t o t}=E_{k}+E_{p}
$$

- Internal energy (\boldsymbol{E}) - the total energy of all atoms, molecules and other particles in a sample of matter
- Law of conservation of energy - the total energy of an isolated object (or a system of objects) is constant
- E_{k} and E_{p} can change, but $E_{k}+E_{p}=$ constant

Thermochemistry

- studies the energy aspects of chemical reactions
- chemical reactions either produce or consume energy

$$
\begin{aligned}
& \mathbf{2 C O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2 \mathrm { CO } _ { \mathbf { 2 } } (\mathrm { g }) + \text { energy }} \\
& \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { g }) + \text { energy } \rightarrow \mathbf { 2 \mathbf { H } _ { \mathbf { 2 } } } (\mathrm { g }) + \mathbf { O } _ { \mathbf { 2 } } (\mathrm { g })}
\end{aligned}
$$

6.1 Forms of Energy

- Kinetic energy $\left(\boldsymbol{E}_{\boldsymbol{k}}\right)$ - due to motion (for an object with mass m and velocity $\left.\boldsymbol{u}: \boldsymbol{E}_{\boldsymbol{k}}=(\mathbf{1 / 2}) \boldsymbol{m} \boldsymbol{u}^{2}\right)$
- Potential energy $\left(\boldsymbol{E}_{\boldsymbol{p}}\right)$ - due to position or interactions (formulas for $\boldsymbol{E}_{\boldsymbol{p}}$ depend on the type of interactions)

Systems and Surroundings

- System - part of the universe under investigation
- Surroundings - the rest of the universe outside the system - In practice, only the nearest surroundings relevant to the system are considered

- Energy transfer between the system and its surroundings results in a change of the system's internal energy
- Internal energy change ($\Delta \boldsymbol{E}$)

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}
$$

- If the system gains energy, $\boldsymbol{E}_{\text {final }}>\boldsymbol{E}_{\text {initial }}$ and $\boldsymbol{\Delta}>0$ - If the system loses energy, $\boldsymbol{E}_{\text {final }}<\boldsymbol{E}_{\text {initial }}$ and $\Delta \boldsymbol{E}<0$
- The energy gained by the system must be lost by the surroundings and vice versa (conservation of energy)
- Open systems - can exchange both matter and energy with the surroundings - open flask, fire, rocket engine, ...
- Closed systems - can exchange energy, but not matter with the surroundings - sealed flask, weather balloon, battery, ..
- Isolated systems - can exchange neither energy nor matter with the surroundings -sealed and thermally isolated container

Heat and Work

- Thermal energy - the energy of the random (thermal) motion of particles in a sample of matter (a part of the internal energy)
- Heat (q) - transfer of thermal energy as a result of a temperature difference
- thermal energy flows from places with high to places with low temperatures
- heating changes the internal energy of a system
- heating can change the temperature or the physical state of a system
- Energy diagrams

- Work (w) - transfer of energy in the form of a motion against an opposing force (mechanical) - causes an uniform molecular motion
- changes the internal energy of the system
- Energy can be transferred by heat and/or work

$$
\Rightarrow \Delta E=q+w
$$

- Heat and work are considered positive ($\boldsymbol{q}>\boldsymbol{0}$ and $\boldsymbol{w}>\boldsymbol{0}$), if they increase the internal energy of the system
-Heat flowing into the system is positive - Work done on the system is positive
- Expansion (PV) work - due to changes in the volume of the system (important for reactions involving gases)
- If an object is moved over a distance (\boldsymbol{l}) against an opposing force (\boldsymbol{F}), the work is:

$$
w=F \times l
$$

- If a system expands against an external pressure $\left(\boldsymbol{P}_{\text {ext }}\right)$ applied over an area (\boldsymbol{A}), the opposing force (\boldsymbol{F}) is:

$$
F=P_{e x t} \times A \quad \Rightarrow \quad w=P_{e x t} \times A \times l
$$

The First Law of Thermodynamics

- $1^{\text {st }}$ Law - The total energy of the universe is constant (energy can't be created or destroyed, it can only be converted from one form to another)

$$
\Delta E_{u n i v}=\Delta E_{s y s}+\Delta E_{\text {surr }}=0
$$

- An isolated system can be viewed as a "small universe" $(q=0$ and $w=0)$

$$
\Delta E=q+w=0 \Rightarrow E=\text { constant }
$$

- $\mathbf{1}^{\text {st }}$ Law - The internal energy of an isolated system is constant (energy can not be created or destroyed within an isolated system)
- Energy units (same units are used for $\boldsymbol{E}, \boldsymbol{q}$ and \boldsymbol{w})
- SI unit \rightarrow joule, $\mathbf{J}\left(\mathbf{1} \mathbf{J}=\mathbf{1} \mathbf{~ k g} \cdot \mathbf{m}^{2} / \mathbf{s}^{\mathbf{2}}\right)$
- Other units \rightarrow calorie, cal ($1 \mathbf{c a l}=4.184 \mathrm{~J}$) $\rightarrow \mathbf{1}$ cal - the energy needed to increase the temperature of 1 g of water by $1^{\circ} \mathrm{C}$
Example: Calculate the change of the internal energy of a system that gains 200 kJ as heat while doing 300 kJ of work.
$q=+200 \mathrm{~kJ} \quad \boldsymbol{w}=\mathbf{- 3 0 0} \mathbf{k J}$
$\Delta E=q+w=200 \mathrm{~kJ}+(-300 \mathrm{~kJ})=\mathbf{- 1 0 0} \mathrm{kJ}$
- State function - a property that depends on the present state of the system (P, V, T, n), but not on the way it arrived in that state
$-\boldsymbol{E}$ is a state function $\Rightarrow \Delta \boldsymbol{E}$ depends only on the initial and final states of the system, but not on the path between these states $\rightarrow \boldsymbol{\Delta} \boldsymbol{E}=\boldsymbol{E}_{\text {final }}-\boldsymbol{E}_{\text {initial }}$ $-\boldsymbol{q}$ and \boldsymbol{w} are not state functions because they depend on the path the system takes between two states

6.2 Reaction Enthalpy

- If only expansion work is done:

$$
\Delta E=q+w=q-P_{e x t} \Delta V
$$

- At constant volume (rigid, sealed container):

$$
\Delta V=0 \quad \Rightarrow \quad \Delta E=q \quad \rightarrow \Delta E=q_{v}
$$

- The heat transferred at constant volume, q_{v}, is equal to the change in the internal energy
- At constant pressure (open container), if the system pressure equals the external pressure:

$$
P=P_{\text {ext }} \quad \Delta E=q-P \Delta V
$$

Exothermic and endothermic processes

- Exothermic process - the system releases heat in the surroundings $(\boldsymbol{q}<\mathbf{0})$ - at constant pressure $\left(\Delta \boldsymbol{H}=\boldsymbol{q}_{\boldsymbol{p}}\right) \Rightarrow \Delta \boldsymbol{H}<\mathbf{0}$
- Endothermic process - the system absorbs heat from the surroundings $(\boldsymbol{q}>\mathbf{0})$ - at constant pressure $\left(\Delta H=q_{p}\right) \Rightarrow \Delta H>0$
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaOH}(\mathrm{aq})+$ heat (exo.)
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})+$ heat $\xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4} \mathrm{NO}_{3}$ (aq) (endo.)

- Specific heat capacity (c) - the heat capacity per unit mass of the object

$$
\boldsymbol{c}=(\text { Heat capacity }) / \boldsymbol{m} \rightarrow \boldsymbol{c}=\boldsymbol{q} / \boldsymbol{m} \Delta \boldsymbol{T}
$$

- units $\mathbf{J} / \mathbf{g} \cdot \mathbf{K}$ or $\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}$ (see Table 6.2)

$$
q=m c \Delta T
$$

- Molar heat capacity (\boldsymbol{C}) - the heat capacity per one mole of a substance (units $\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K}$)
Example: Calculate the heat needed to warm up 2.5 g of ice from $\mathbf{- 2 0}$ to $-\mathbf{5}^{\circ} \mathrm{C}$. $(\boldsymbol{c}=\mathbf{2 . 0 3} \mathbf{~ J} / \mathbf{g} \cdot \mathrm{K})$ $\Delta T=T_{f}-T_{i}=-5^{\circ} \mathrm{C}-\left(-20^{\circ} \mathrm{C}\right)=15^{\circ} \mathrm{C}$ $q=m c \Delta T=2.5 \mathrm{~g} \times 2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 15^{\circ} \mathrm{C}=+76 \mathrm{~J}$
- The heat released by the system is absorbed by the surroundings
$q_{s y s}=-q_{s u r r}$

6.3 Heat Measurements

- Heat transfer in or out of an object can be estimated by measuring the temperature change in the object
- Heat capacity - the heat required to increase the temperature of an object by $\mathbf{1} \mathbf{K}$ (or ${ }^{\circ} \mathbf{C}$)

Heat capacity $=\boldsymbol{q} / \Delta \boldsymbol{T}$

- units \mathbf{J} / \mathbf{K} or $\mathbf{J} /{ }^{\circ} \mathbf{C}$
- The heat capacity is an extensive property that increases with the size of the object
- Calorimeter - a device used to measure heat transfers
- thermally insulated container with a known heat capacity supplied with a thermometer
- the system is placed in the calorimeter which serves as its surroundings
- the heat transfer is estimated from the temperature change of the calorimeter contents
- the system can be a chemical reaction
- Types of calorimeters
- constant pressure calorimeters $\left(\boldsymbol{q}_{\boldsymbol{p}}=\boldsymbol{\Delta H}\right)$
- constant volume calorimeters $\left(\boldsymbol{q}_{\boldsymbol{v}}=\boldsymbol{\Delta E}\right)$

Example: $\mathbf{2 7} \mathbf{g}$ of brass at $\mathbf{1 0 5}^{\circ} \mathrm{C}$ are placed in a coffee-cup calorimeter filled with 100 g of water at $\mathbf{2 0}^{\circ} \mathbf{C}$. The water temperature increases to $\mathbf{2 2}^{\circ} \mathbf{C}$. Calculate the specific heat capacity of brass. ($c_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)
$q_{\text {water }}=-q_{\text {brass }} \Rightarrow(m c \Delta T)_{w}=-(m c \Delta T)_{b}$
$(c)_{b}=-\frac{(m c \Delta T)_{w}}{(m \Delta T)_{b}}=-\frac{100 \mathrm{~g} \times 4.18 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \times(22-20)^{\circ} \mathrm{C}}{27 \mathrm{~g} \times(22-105)^{\circ} \mathrm{C}}$ $=-\frac{100 \times 4.18 \times 2}{27 \times(-83)} \frac{\mathrm{J}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}=0.37 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}$

Example:

A sample of $\mathbf{1 . 8 2} \mathbf{g}$ sugar is burned in a bomb calorimeter with heat capacity $9.20 \mathrm{~kJ} / \mathbf{K}$. The temperature rises by $\mathbf{3 . 2 ^ { \circ }} \mathbf{C}$. What is the heat of the reaction per gram of sugar.
$q_{\text {sys }}=-q_{\text {surr }}=-($ Heat capacity $) \times \Delta T$
$=-9.20 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 3.2^{\circ} \mathrm{C}=-29 \mathrm{~kJ}$
$q_{v}=\Delta E=-29 \mathrm{~kJ}$
Heat per gram $=-29 \mathrm{~kJ} / 1.82 \mathrm{~g}=-16 \mathrm{~kJ} / \mathrm{g}$

- Properties of thermochemical equations
- multiplying an equation by a number multiplies the $\Delta \boldsymbol{H}_{r}$ value by the same number
- reversing the direction of a reaction changes the sign of the $\Delta \boldsymbol{H}_{r}$ value

$$
2 \mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta H=-2 \times 890 \mathrm{~kJ}
$$

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})
$$

$$
\Delta H=+890 \mathrm{~kJ}
$$

- Specific heats of dilute aqueous solutions are taken to be the same as that of water.
Example: A reaction between $\mathbf{5 0} \mathbf{g}$ of dilute HCl and $\mathbf{5 0} \mathbf{g}$ of dilute NaOH takes place in a coffee-cup calorimeter. The temperature rises by $2.1^{\circ} \mathrm{C}$. What is the heat of the reaction.

$$
\begin{aligned}
& c \approx c_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \\
& m=50 \mathrm{~g}+50 \mathrm{~g}=100 \mathrm{~g} \quad \Delta T=+2.1^{\circ} \mathrm{C} \\
& q_{\text {sys }}=-q_{\text {surr }}=-\boldsymbol{m c} \Delta T \\
& =-100 \mathrm{~g} \times 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 2.1^{\circ} \mathrm{C}=\mathbf{- 8 . 8} \times 10^{\mathbf{2}} \mathrm{J} \\
& =-\mathbf{0 . 8 8} \mathrm{kJ} \quad \rightarrow \quad q_{p}=\Delta H=\mathbf{- 0 . 8 8} \mathrm{kJ}
\end{aligned}
$$

6.4 Reaction Enthalpy and Stoichiometry

- Thermochemical equation - the chemical equation with physical states and the reaction enthalpy (heat of reaction) $\rightarrow \Delta \boldsymbol{H}_{r}$
$\mathbf{C H}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { l })}$

$$
\Delta H_{r}=-890 \mathrm{~kJ}
$$

ΔH_{r} is for $1 \mathrm{~mol} \mathrm{CH}_{4}$ and 2 mol of O_{2}

- The value of $\Delta \boldsymbol{H}_{r}$ depends on the way the chemical equation is written (stoichiometric coefficients)

Example: When $\mathbf{2 . 3 1} \mathbf{g}$ of solid \mathbf{P} reacts with gaseous $\mathbf{C l}_{\mathbf{2}}$ to form liquid $\mathbf{P C l}_{3}$ in a constant pressure calorimeter 23.9 kJ of heat are released to the surroundings. Write the thermochemical equation.
$P=$ constant
$\Rightarrow \Delta H=q_{p}=-23.9 \mathrm{~kJ} \quad($ for 2.31 g P$)$
Chem. Eq: $\quad \mathbf{2 P (s)}+\mathbf{3 C l} \mathbf{2}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{PCl}_{3}(\mathrm{l})$
\Rightarrow need ΔH_{r} for $2 \mathrm{~mol} P$
$2.31 \mathrm{~g} \mathrm{P} \times\left(\frac{1 \mathrm{~mol} \mathrm{P}}{30.97 \mathrm{~g} \mathrm{P}}\right)=7.46 \times 10^{-2} \mathrm{~mol} \mathrm{P}$
$\Delta H_{r}=\frac{-23.9 \mathrm{~kJ}}{7.46 \times 10^{-2} \mathrm{~mol} \mathrm{P}} \times 2 \mathrm{~mol} \mathrm{P}=-641 \mathrm{~kJ}$
$2 \mathrm{P}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PCl}_{3}(\mathrm{l}) \quad \Delta H_{r}=-641 \mathrm{~kJ}$

- The reaction enthalpy $\left(\boldsymbol{\Delta} \boldsymbol{H}_{r}\right)$ is treated stoichiometrically as a product of the reaction Example: Calculate the enthalpy change for the combustion of $\mathbf{1 5 g}$ of octane by the reaction:

$$
\begin{aligned}
& \Delta H_{r}=-10942 \mathrm{~kJ} \\
& 2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18} \Leftrightarrow-10942 \mathrm{~kJ} \\
& 15.0 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}\left(\frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{114 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}}\right)\left(\frac{-10942 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}\right)=-718 \mathrm{~kJ}
\end{aligned}
$$

- Hess's law - the reaction enthalpy of an overall process is the sum of the reaction enthalpies of the individual steps into which the process can be divided
\Rightarrow The addition of two or more thermochemical equations results in an equation with a ΔH value equal to the sum of the ΔH values of the added equations
\Rightarrow Multiplying an equation by a factor multiplies the ΔH value by the same factor
\Rightarrow Reversing the direction of a reaction changes the sign of the ΔH value

Procedure: 1) Rewrite the given equations by placing the reactants and products from the overall equation on the left and right side of the given equations, respectively (if necessary, reverse the direction of the reactions)

$$
3 \mathrm{C}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathbf{H}_{8}(\mathrm{~g})
$$

\Rightarrow reverse direction of eq. A (change sign of ΔH_{I})
A $\mathbf{3 C O}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{\mathbf{8}}(\mathrm{g})+\mathbf{5 O}_{\mathbf{2}}(\mathrm{g})$ $\Delta H_{A}=+2220 . \mathrm{kJ}$
$\mathrm{B} \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{B}=-394 \mathrm{~kJ}$
C $\mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{1} / \mathbf{2 O}_{2}(\mathrm{~g}) \rightarrow \mathbf{H}_{\mathbf{2}} \mathrm{O}(\mathrm{I}) \quad \Delta H_{C}=\mathbf{- 2 8 6} \mathrm{kJ}$
2) Multiply the given equations by factors in order to match the stoichiometric coefficients of the reactants and products in the overall equation

$$
3 \mathrm{C}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathbf{H}_{8}(\mathrm{~g})
$$

\Rightarrow multiply eq. B by 3 and eq. C by 4 (multiply ΔH by 3 and 4 , respectively)
$\mathrm{A} \mathbf{3 C O}(\mathrm{g})+\mathbf{4} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{\mathbf{3}} \mathrm{H}_{\mathbf{8}}(\mathrm{g})+\mathbf{5 O}_{\mathbf{2}}(\mathrm{g})$

$$
\Delta H_{A}=+2220 . \mathrm{kJ}
$$

$\mathrm{B} \mathbf{3 C}(\mathrm{s})+\mathbf{3 O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{3 \mathrm { CO } _ { 2 }}(\mathrm{g}) \Delta H_{B}=\mathbf{- 3 \times 3 9 4} \mathrm{kJ}$
$\mathrm{C} \mathbf{4} \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{2 O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{4} \mathbf{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l})$

$$
\Delta H_{C}=-4 \times 286 \mathrm{~kJ}
$$

6.6 Standard Reaction Enthalpies

- $\Delta \boldsymbol{H}_{\boldsymbol{r}}$ depends on the physical states of reactants an products, \boldsymbol{P} and \boldsymbol{T}
- Standard state - the state of a pure substance in its most stable form at $\mathbf{1 ~ a t m}$ and a given temperature (usually $\mathbf{2 9 8} \mathbf{K}$). For substances in solutions, the standard state is at concentrations $1 \mathrm{~mol} / \mathrm{L}$
- Standard reaction enthalpy $\left(\Delta \boldsymbol{H}_{\boldsymbol{r}}{ }^{\mathbf{}}\right)-\Delta \boldsymbol{H}_{\boldsymbol{r}}$ for a reaction in which all reactants and products are in their standard states

$$
\begin{aligned}
& \text { 3) Add the sequence of equations and cancel the the } \\
& \text { species appearing on both sides of the resulting } \\
& \text { equation } \\
& 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{C}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \\
& +4 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \\
& \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O} \text { (l) } \\
& \mathbf{3 C}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})
\end{aligned}
$$

4) Add the resulting reaction enthalpies to obtain the overall reaction enthalpy
$\Delta H_{r}=+2220 .+(-3 \times 394)+(-4 \times 286)=-106 \mathrm{~kJ}$
$3 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \quad \Delta H_{r}=-106 \mathrm{~kJ}$

- Standard enthalpy of formation $\left(\Delta H_{f}{ }^{\boldsymbol{g}}\right)$ - the standard enthalpy change for the formation of $\mathbf{1 ~ m o l}$ of a substance from its elements in their most stable form (Appendix B)
- For elements in their standard states, $\boldsymbol{\Delta \boldsymbol { H } _ { \boldsymbol { f } } { } ^ { \boldsymbol { o } } = \mathbf { 0 } , ~}$
$\mathrm{C}(\mathrm{s}$, graphite $) \rightarrow \quad \Delta H_{f}{ }^{0}=0$ $\mathrm{C}(\mathrm{s}$, graphite $) \rightarrow \mathrm{C}\left(\mathrm{s}\right.$, diamond) $\quad \Delta \boldsymbol{H}_{f}{ }^{\boldsymbol{o}}=1.9 \mathrm{~kJ} / \mathrm{mol}$ - For compounds, $\Delta \boldsymbol{H}_{f}{ }^{o}$ can be positive or negative $\mathbf{2 C}(\mathrm{s})+\mathbf{3} \mathrm{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{1 / 2 \mathrm { O } _ { \mathbf { 2 } }}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$ $\Delta H_{f}{ }^{o}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{l}\right)=-277.7 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
- Most compounds have $\Delta \boldsymbol{H}_{f}{ }^{0}<\mathbf{0}$ - such compounds are more stable than their elements
$\Delta H_{r}{ }^{o}=H_{\text {final }}^{o}-H^{o}{ }_{\text {initial }}$
$\Delta H_{r}{ }^{o}=\Sigma m \Delta H_{f}{ }^{\boldsymbol{o}}$ (products) $-\Sigma n \Delta H_{f}{ }^{\boldsymbol{o}}$ (reactants)
($\boldsymbol{n}, \boldsymbol{m}$ - stoichiometric coefficients of reactants or products)
\rightarrow Follows from Hess's law

Example: Calculate the standard enthalpy of
 data from Appendix B.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+\mathbf{6 O} \mathrm{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{6} \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\Delta H_{r}{ }^{o}=\Sigma n \Delta H_{f}{ }^{\boldsymbol{o}}$ (products) $-\Sigma n \Delta H_{f}{ }^{o}$ (reactants) $\Delta H_{r}{ }^{o}=\left[6 \times \Delta H_{f}{ }^{o}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)+6 \times \Delta H_{f}{ }^{o}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{t})\right)\right]-$
$-\left[1 \times \Delta H_{f}{ }^{o}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})\right)+6 \times \Delta H_{f}{ }^{o}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]$
$=[6 \times(-393.5)+6 \times(-285.8)]-[1 \times(-1273)+6 \times 0]$
$=-2803 \mathrm{~kJ}$
$\Delta H_{c}{ }^{\circ}=-2803 \mathrm{~kJ} / 1 \mathrm{~mol} \mathrm{C} \mathrm{C}_{6} \mathrm{O}_{6}=-2803 \mathrm{~kJ} / \mathrm{mol}$

