

Electron Configuration and Chemical Periodicity

The Periodic Table

- Periodic law (Mendeleev, Meyer, 1870) periodic reoccurrence of similar physical and chemical properties of the elements arranged by increasing atomic mass
 - Periodic table included the 65 known elements
 - Mendeleev left blank spaces for the undiscovered elements and was able to predict their properties
 - The true basis of periodicity is the **atomic number** not the atomic mass (Mosley, 1913)

8.1 Many-Electron Atoms

- Only approximate solutions of the Schrödinger equation are available
- Electron-electron interactions are important
- The same tree quantum numbers $(n, l \text{ and } m_l)$ are used to describe the solutions (the orbitals are hydrogen-like)

The Electron Spin

- The electron can be viewed as a ball of spinning charge – has a magnetic moment
- The magnetic moment is quantized only two orientations of the spin are allowed in a magnetic field

- \Rightarrow Spin quantum number (*m*_s) two possible values of $m_{\rm s}$ (+1/2 and -1/2)
- Each electron in an atom is described by four quantum numbers -n, l, m_l , m_s

The Pauli exclusion principle – no two electrons in an atom can have the same set of four quantum numbers \Rightarrow Each orbital can hold no more than two electrons and they must have opposite spins (paired spins, $\uparrow\downarrow$) **Orbital Energies**

 n^{\uparrow}

• Orbital energies depend on both *n* and *l*

$$l \to E^{\uparrow} \qquad l^{\uparrow} \to E^{\prime}$$

 \Rightarrow Orbitals in different subshells of a given principal shell have different energies

- Evidence many-electron atoms have more complex atomic spectra (splitting of *E*-levels)
- Electrons are attracted by the nucleus and repelled by each other - The effect of nuclear charge (Z) - higher Z lowers the orbital energy - The effect of electron repulsion – an additional e in the same orbital raises the orbital energy One e⁻ makes the other e⁻ ea to remove This e^{_} is **easie**l easier to remove This orbital is This orbital is less stable -1311 ess stable -2372 H1s He 1s (kJ/mol) (kJ/mol) This e[—] is **harder** This e[—] is **harder** to remove ergy to remove This orbital is This orbital is nore stable -5250 more stable -5250 He He⁺

Electron shielding – electrons shield each other from the nuclear charge

- **Inner electrons** shield **outer electrons** more effectively than electrons in the same orbital or subshell
- Effective nuclear charge (Z_{eff}) smaller than the actual nuclear charge (Z) due to electron shielding
- **Penetration** electrons on orbitals in different subshells of a given shell are shielded to a different extent depending on their penetration (closeness) to the nucleus

More penetration \rightarrow less shielding \rightarrow higher Z_{eff}

8.2 Electron Configurations

- Building-up (aufbau) principle as new electrons are added to the atom, they are placed in the lowest energy available orbital (minimization of the total energy of the atom)
 - Electron configuration a list of the occupied subshells and the number of electrons on them
 - **Orbital diagrams** each orbital is represented by a box; the electrons are shown as up or down arrows depending on the spin quantum number (+1/2 or -1/2)

- **Degenerate orbitals** orbitals with equal energies – All orbitals in a subshell are degenerate (same *n*
 - and l) \rightarrow the three 2*p*-orbitals are degenerate
- **Hund's rule** in filling degenerate orbitals, electrons enter the empty orbitals having identical spins before pairing in one of them (minimization of the repulsion between the electrons)

- Outer electrons electrons in the outermost occupied principal shell
- Inner (core) electrons inner shells
- Condensed e⁻ configurations inner shells (or part of them) can be abbreviated with the symbol of the previous noble gas in brackets $1s^2 \rightarrow$ abbreviated as [He]

Example: Predict the electron configurations of **F** and **Ne**. orbital order: 1s, 2s, 2p, 3s, 3p, ... F (Z = 9, 9 e⁻) \rightarrow 1s²2s²2p⁵ \rightarrow [He]2s²2p⁵ Ne (Z = 10, 10 e⁻) \rightarrow 1s²2s²2p⁶ \rightarrow [He]2s²2p⁶ [He]2s²2p⁶ \rightarrow closed shell \rightarrow abbreviated as [Ne] 2p1s1s1sF (Z=9) [He]2s²2p⁵ [He]2s²2p⁶ [Ne]

Table 8.3 P	artial Orbital Diagrams and lements in Period 3	d Electron Configuratio	ons* for the	
Atomic Number/ Element	Partial Orbital Diagram (3 <i>s</i> and 3 <i>p</i> Sublevels Only)	Full Electron Configuration	Condensed Electron Configuration	
11/Na	3s 3p ↑	$[1s^22s^22p^6]$ 3s ¹	[Ne] <u>3s</u> ¹	
12/Mg		$[1s^22s^22p^6]$ 3s ²	[Ne] $3s^2$	
13/Al	↑↓	$[1s^22s^22p^6] 3s^23p^1$	[Ne] $3s^2 3p^1$	
14/Si		$[1s^22s^22p^6] 3s^23p^2$	[Ne] $3s^2 3p^2$	
15/P		$[1s^22s^22p^6] 3s^23p^3$	[Ne] $3s^2 3p^3$	
16/S		$[1s^22s^22p^6] 3s^23p^4$	[Ne] $3s^2 3p^4$	
17/Cl		$[1s^22s^22p^6] 3s^23p^5$	[Ne] $3s^2 3p^5$	
18/Ar	$\uparrow\downarrow \qquad \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow$	$[1s^22s^22p^6] 3s^23p^6$	[Ne] $3s^2 3p^6$	

• How to remember					
the energy order of	15				
the orbitals:	26	20			
1s < 2s < 2p < 3s < 3p	25	20			
< 4s < 3d < 4p < 5s <	3 <i>s</i>	3p	Зd		121
4d < 5p < 6s < 4f < 5d					1
< 6p < 7s < 5f < 6d <	45	4p	4 <i>d</i>	4 <i>f</i>	
7 <i>p</i>	1	/ y			1
	5 <i>s</i>	5p	5d	5f	
Note:	J.	l y	/ /		
4s is filled before 3d	6 <i>s</i>	6 <i>p</i>	6d		
	1	J.			
	7 <i>s</i>	7p			

Table 8.4	Partial O	rbital Diagrams and Electron	n Configuratio	ns* for Period 4						
Atomic Number	Element	Partial Orbital Diagram (4 <i>s</i> , 3 <i>d</i> , and 4 <i>p</i> Sublevels C	artial Orbital Diagram Condensed El. 4 <i>s,</i> 3 <i>d,</i> and 4 <i>p</i> Sublevels Only) Configuration							
19	К	4s 3d	4 <i>p</i>	[Ar] 4s ¹						
20	Ca			$[Ar] \frac{4s^2}{4s^2}$						
21	Sc	↑↓		$[Ar] 4s^2 3d^1$						
22	Ti			$[Ar] 4s^2 3d^2$						
23	v			$[Ar] 4s^2 3d^3$						
• Exce	eptions	s to the building-u	ip princip	ole						
– Ha	alf-fille	d subshells have ex	ceptional	stability						
Cr	· → [Aı	r]4s ¹ 3d ⁵ instead of [[Ar]4 <i>s</i> ² 3 <i>d</i> ⁴	ł						

Atomic Number	Element	Partis (4 <i>s</i> , 3	al Orbital Diagram B <i>d,</i> and 4 <i>p</i> Sublevels Or	Condensed El. Configuration	
	0.00	45	3 <i>d</i>	4 <i>p</i>	1.4
24	Cr	\uparrow	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		$[Ar] 4s^{1}3d^{5}$
25	Mn	$\uparrow\downarrow$	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		$[Ar] 4s^2 3d^5$
26	Fe	$\uparrow \downarrow$	$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$		$[Ar] 4s^2 3d^6$
27	Co	$\uparrow\downarrow$			$[Ar] 4s^2 3d^7$
28	Ni	$\uparrow\downarrow$	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$		$[Ar] 4s^2 3d^8$
29	Cu	\uparrow	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow$		[Ar] $4s^1 3d^{10}$
30	Zn	$\uparrow \downarrow$	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$		[Ar] $4s^2 3d^{10}$
– Co sta	omplet bility	ely f	illed subshells h	ave exe	ceptional
Cı	$i \rightarrow [A]$	r] <mark>4</mark> s	¹ 3d ¹⁰ instead of	[Ar]4s ²	3 <i>d</i> ⁹

Electronic Structure and the Periodic Table

- The table is divided into *s*, *p*, *d*, and *f* blocks named by the last occupied subshell being filled
- Electron configurations can be deduced from the positions of elements in the periodic table
 - Outer shell principal quantum numbers equal period numbers (F $\rightarrow 2^{nd}$ period, *n*=2)
 - All elements in a period have the same noble-gas core configurations ([He], [Ne], [Ar], ...)

Examples:

Write the full and condensed electron configurations of galium, Ga. (H, He) $1s^2 \rightarrow$ (Li, Be) $2s^2 \rightarrow$ (B-Ne) $2p^6 \rightarrow$ (Na, Mg) $3s^2 \rightarrow$ (Al-Ar) $3p^6 \rightarrow$ (K, Ca) $4s^2 \rightarrow$ (Sc-Zn) $3d^{10} \rightarrow$ (Ga) $4p^1 \Rightarrow$ Ga $\rightarrow 1s^22s^22p^63s^23p^64s^23d^{10}4p^1 \Rightarrow$ Ga \rightarrow [Ar] $4s^23d^{10}4p^1$

Write the electron configuration of osmium, Os.

Os is in the 6th period \rightarrow outer shell *n*=6 Previous noble gas is Xe \rightarrow noble-gas core is [Xe] After Xe \rightarrow 2 *ns*, 14 (*n*-2)f, and 6 (*n*-1)d elements \Rightarrow [Xe]6s²4f¹⁴5d⁶

• Valence electrons – the electrons in the outermost occupied principal shell and in partially filled subshells of lower principal shells (important in chemical reactions)

- The number of valence electrons equals the "new" group # or (group # - 10 for *p*-elements)
- All elements in a group have analogous valence shell electron configurations (F \rightarrow [He]2s²2p⁵; Cl \rightarrow [Ne]3s²3p⁵; all halogens \rightarrow ns²np⁵)
- >s and p elements → group 1 ns^1 , group 2 ns^2 , group 13 ns^2np^1 , ..., group 18 ns^2np^6
- >d elements → group 3 $(n-1)d^{1}ns^{2}$, ..., group 12 $(n-1)d^{10}ns^{2}$

Example:

Write the electron configuration and the valence shell orbital diagram of lead, Pb. outer shell n=6 noble-gas core [Xe] After Xe \rightarrow 2 6s, 14 4f, 10 5d, and 2 6p elements \Rightarrow [Xe] 6s²4f¹⁴5d¹⁰6p² \Rightarrow Valence shell configuration \rightarrow 6s²6p²

 \Rightarrow Valence shell orbital diagram:

8.3 Periodic Trends in Atomic Properties

 Periodicity is based on the electron configuration which depends on the # of electrons which in turn depends on the number of protons (atomic #)

Trends in Atomic Size

- Atomic radius half of the distance between the centers of two adjacent identical atoms – Metallic radius – for metals in the solid phase – Covalent radius – for nonmetals in molecules
- Atomic radii **increase down a group** and **decrease** from left to right **across a period** (for main group elements)

- Down a group the valence shell principal quantum number (*n*) increases ⇒ orbitals and electron clouds become larger
- Across a period the nuclear charge increases while the new electrons enter the same principal shell (do not shield each other effectively) \Rightarrow the effective nuclear charge (Z_{eff}) increases and draws the electrons closer to the nucleus

Example: Compare the sizes of Ge, Sn and Se.

Sn is below Ge \Rightarrow Sn>Ge

Ge is to the left of $Se \Rightarrow Ge > Se$

• For the **transition elements**, the size trend **across a period** is not as pronounced because electrons are added to inner shells which provides better shielding of the outer electrons, so Z_{eff} does not increase as much

Trends in Ionization Energy

•	Ionization energy (<i>I</i>) – energy required to remove an electron from a gas-phase atom
	- First ionization energy (I_I) - to remove the 1 st e ⁻
	$X(g) \rightarrow X^+(g) + e^-$
	- Second ionization energy (I_2) - to remove a 2 nd e
	$X^+(g) \rightarrow X^{2+}(g) + e^-$
•	Ionization energies are positive (endothermic) and become larger with every subsequent ionization
	$0 < I_1 < I_2 < I_4 \dots$
	- It's harder to remove an e^- from a positive ion

- First ionization energies **decrease down a group** and **increase** from left to right **across a period** (with some exceptions)
- **Down a group** electrons are removed from shells that are farther from the nucleus (less tightly bound)
- Across a period Z_{eff} increases (valence electrons are more tightly bound to the nucleus)
- Low ionization energy accounts for the metallic character of elements in the lower left corner of the table (*s*, *d*, *f* and some of the *p* block) – easy removal of e⁻ provides better conductivity and tendency to form cations

• Irregularities in the ionization energy trends

- Decrease in I_1 between groups 2(2A) and 13(3A) elements

group $2A \rightarrow ns^2$ group $3A \rightarrow ns^2np^1$

- The *n***p** electron is easier to remove than the *n***s** electron *p*-subshells have higher energy and are less tightly bound
- Decrease in I_1 between groups 15 and 16 elements

group 15(5A) $\rightarrow ns^2 np_x^{-1} np_y^{-1} np_z^{-1}$ group 16(6A) $\rightarrow ns^2 np_x^{-2} np_y^{-1} np_z^{-1}$

• It's easier to remove the paired electron on the p_x -orbital – paired electrons repel each other stronger than unpaired electrons

• Considerable jump in the successive ionization
energies occurs after removal of all valence
electrons – core electrons are much more
difficult to remove than valence electrons
- explains the charges of stable metal cations
$Na \rightarrow [Ne]3s^1$
I ₁ =496 kJ/mol, I ₂ =4562 kJ/mol
Stable cation $\rightarrow Na^+$
$Mg \rightarrow [Ne]3s^2$
$I_1 = 738$ kJ/mol, $I_2 = 1450$ kJ/mol, $I_3 = 7734$
kJ/mol
Stable cation $\rightarrow Mg^{2+}$

1A (1)							8A (18)	
H -72.8	2A (2)	3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	He (0.0)	
Li - 59.6	Be (+18)	B -26.7	C - 122	N +7	0 - 141	F - 328	Ne (+29)	
Na - 52.9	Mg (+21)	AI - 42.5	Si - 134	P - 72.0	S -200	CI - 349	Ar (+35)	
K - 48.4	Ca (+186)	Ga - 28.9	Ge - 119	As - 78.2	Se - 195	Br - 325	Kr (+39)	
Rb - 46.9	Sr (+146)	In - 28.9	Sn - 107	Sb - 103	Te - 190	 -295	Xe (+41)	
Cs - 45.5	Ba (+46)	TI -19.3	Pb - 35.1	Bi - 91.3	Po - 183	At -270	Rn (+41)	

Trends in Electron Affinity
• Electron affinity (A) – energy associated with the addition of an electron to a gas-phase atom
- First electron affinity (A_I) - to add the 1 st e ⁻
$X(g) + e^- \rightarrow X^-(g)$
- Second electron affinity (A_2) - to add a 2 nd e ⁻
$X^{-}(g) + e^{-} \rightarrow X^{2-}(g)$
• Electron affinities can be either exothermic (- or endothermic (+)
$-A_I$ is typically (-) (exceptions: group 2A, 8A,)
$-A_2, A_3 \dots$ are always positive
- By convention, "larger" A is more exothermic (-)

- First electron affinities tend to be **larger (more exothermic) in the upper right corner** of the table similarly to the first ionization energies
- Successive electron affinities are smaller and smaller more endothermic (A₁ > A₂ > A₃ ...)
 It's harder to add an e⁻ to a negative ion
- Considerable **drop** in the successive electron affinities occurs after achieving a noble gas configuration – the new electrons are added to a higher principal shell
 - Explains the charges of the stable anions of groups 15, 16 and 17 (N³⁻, O²⁻, F⁻...)

• Irregularities in the electron affinity trends

- Decrease in A_1 between groups 1 and 2 elements

group $1 \rightarrow ns^1$ group $2 \rightarrow ns^2$

- For group 2 the new electron is added to the higher energy *n***p** subshell
- Decrease in A_1 between groups 14 and 15 element

group $14 \rightarrow ns^2 np_x^{-1} np_y^{-1}$ group $15 \rightarrow ns^2 np_x^{-1} np_y^{-1} np_z^{-1}$

• For group 15 the new electron is added to an already occupied *np* orbital – pairing of electrons is energetically unfavorable (stronger repulsion)

- Relative tendency to lose or gain electrons
 The tendency to form cations increases to the left
 - and toward the bottom (*I* decreases) – The tendency to form anions increases to the right
 - and toward the top (A increases)
- Elemental oxides
 - Metals tend to form ionic oxides that act as bases in water \rightarrow basic oxides (Na₂O, CaO, BaO, ...)
 - Nonmetals tend to form covalent oxides that act as acids in water \rightarrow acidic oxides (CO₂, SO₃, ...)
 - Most metalloids and some metals form amphoteric oxides \rightarrow can act as acids or bases in water (Al₂O₃, GeO₂, ...)

For *d*-elements, electrons are lost first from the *ns* subshell followed by the (*n-1*)*d* subshell
In general, not all valence electrons are lost and more than one cations are possible
Example: Write the electron configuration of Co³⁺.
Co → [Ar]4s²3d⁷ Co³⁺ → [Ar]3d⁶
Electron configurations of anions

Electrons are added until a noble-gas configuration is reached
Example: Write the electron configuration of the nitride ion.

N → [He]2s²2p³ N³⁻ → [He]2s²2p⁶ → [Ne]

- **Ionic sizes** (ionic radii)
 - Part of the distance between the centers of two neighboring ions in an ionic solid (O²⁻ is used as a standard with radius 140 pm)
- Cations are smaller than their parent atoms - Cation size decreases as charge increases for the different cations of an element
- Anions are larger then their parent atoms
- Ionic sizes of cations as well as anions follow the same trends in the periodic table as the sizes of atoms (increase down and to the left)
 - In a given period, the anions are larger than the cations

Isoelectronic species – atoms and ions with the same number of electrons (have the same electron configuration)

 Size decreases with increasing the atomic number of the element (nuclear charge increases)

 Example: Compare the sizes of Cl⁻, Ca²⁺ and Sc³⁺
 Isoelectronic, electron configuration of argon [Ar]

 Sc³⁺ < Ca²⁺ < Cl⁻ (atomic number ↓)

 Example: Compare the sizes of Ca, Ca²⁺ and Mg²⁺
 Ca²⁺ < Ca (cation is smaller)
 Mg²⁺ < Ca²⁺ (Mg is above Ca) ⇒ Mg²⁺ < Ca²⁺ < Ca