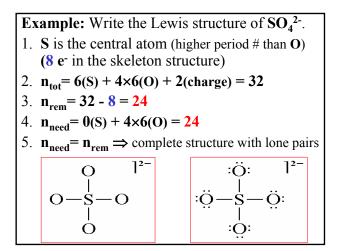
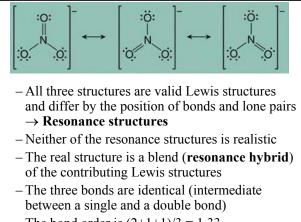

The Shapes of Molecules

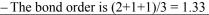
10.1 Lewis Structures of Polyatomic Species

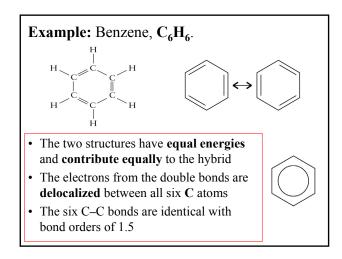
- Skeleton structure the connectivity of atoms in polyatomic species
 - Central atom(s) usually the atom with the lower group number or higher period number (lowest *EN*)
 - Often written first in the formula PCl_5 , SO_3 , ...
 - Normally **H** is not a central atom
 - Polyatomic ions
 - The cation and the anion of an ionic compound are treated separately
 - \bullet Total number of valence e^{\bullet} is adjusted for the charge of the ion


Rules for Writing Lewis Structures

- Write the skeleton structure by placing a single bond (e⁻ pair) between each bonded pair of atoms
- 2. Count the total number of valence electrons of all atoms, \mathbf{n}_{tot} (correct for the charges of ions)
- Count the number of remaining electrons, n_{rem} (total number of e⁻ minus e⁻ used in the skeleton structure as bonds)
- Count the number of needed electrons, n_{need} (the e⁻ needed to complete the octet (or duplet) structures of all atoms)




Example: Write the Lewis structure of HCN.
1. C is the central atom (lower group # than N)


$$\Rightarrow$$
 H-C-N (4 e⁻ in the skeleton structure)
2. $n_{tot} = 1(H) + 4(C) + 5(N) = 10$
3. $n_{rem} = 10 - 4 = 6$
4. $n_{need} = 0(H) + 4(C) + 6(N) = 10$
5. $n_{need} > n_{rem}$ deficiency of 4 e⁻ (2 e⁻ pairs)
 \Rightarrow add 2 more bonds between C and N and
complete the structure with lone pairs
H-C=N:

Resonance in Lewis StructuresExample: Write the Lewis structure of NO_3^- .1. N is the central atom (lower group # than O)6 e⁻ in the skeleton structure2. $n_{tot} = 5(N) + 3 \times 6(O) + 1(charge) = 24$ 3. $n_{rem} = 24 - 6 = 18$ 4. $n_{need} = 2(N) + 3 \times 6(O) = 20$ 5. $n_{need} > n_{rem}$ deficiency of 2 e⁻ (1 e⁻ pair) \Rightarrow add 1 more bond between N and one of the Os and complete the structure with lone pairsOO<t

Formal charge (FC) – a charge assigned to atoms in Lewis structures assuming that the shared e^{-} are divided equally between the bonded atoms.

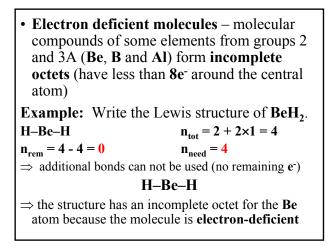
- The # of e^- assigned to an atom in a Lewis structure \rightarrow all lone pair e^- (L) and half of the shared e^- (S)
- The # of valence e^- of an atom (V) \rightarrow V = group#
- The # of bonds for an atom (**B**) \rightarrow B = S/2

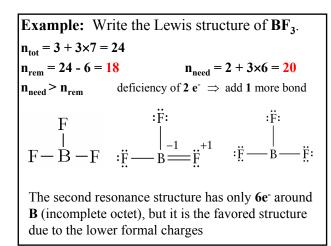
FC = V - [L + S/2] = V - [L + B]

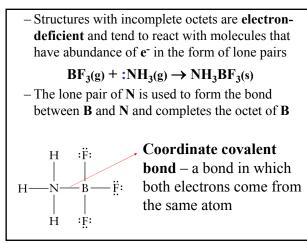
The FC shows the extent to which atoms have gained or lost e⁻ in covalent bond formation
The sum of all FCs equals the charge of the species

Example: Write the possible resonance structures of the **NCO**⁻ ion (N-C-O) including the formal charges of all atoms.

[N-C-O] ⁻		
$n_{tot} = 5 + 4 + 6 + 1 = 16$		
$n_{rem} = 16 - 4 = 12$ $n_{need} = 6 + 4 + 6 = 16$		
$\mathbf{n_{need}} > \mathbf{n_{rem}}$ deficiency of $4 e^- \Rightarrow add 2$ more bonds		
a) $[:N=C=O:]^{-}$ b) $[:N=C-O:]^{-}$ c) $[:N-C=O:]^{-}$		
$V \rightarrow 5(N) \ 4(C) \ 6(O)$		
$L+B \rightarrow a) 6(N) 4(C) 6(O) FC \rightarrow a) -1(N) 0(C) 0(O)$		
$L+B \rightarrow b$) 5(N) 4(C) 7(O) FC $\rightarrow b$) 0(N) 0(C) -1(O)		
$L+B \rightarrow c$) 7(N) 4(C) 5(O) FC $\rightarrow c$) -2(N) 0(C) +1(O)		

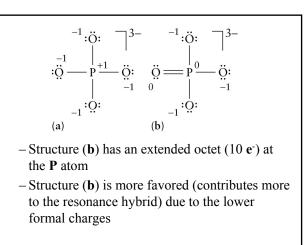

• FCs are used to evaluate the relative		
importance of resonance structures		
1. Lewis structures with lower FCs are favored		
Lewis structures with like FCs on adjacent atoms are less favorable		
3. Lewis structures with negative FCs on the more electronegative atoms are favored		
Example: Evaluate the importance of the three possible resonance structures of the NCO ⁻ ion		
a) [:N=C=O:] ⁻ b) [:N≡C−O:] ⁻	c) [:N−C≡O:] ⁻	
1 0 0 / 0 0 -i	-2 0 +1	
Most favored	Least favored	
[(-) FC on the more EN atom]	(highest FCs)	

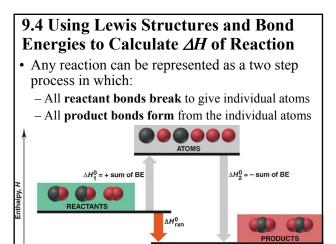

Exceptions to the Octet Rule


- Odd electron species (radicals) \rightarrow ·CH₃, ·OH, ·NO, ·NO₂, ...
 - Have an unpaired electron paramagnetic
 - Highly reactive and short lived species
 - Significance to atmospheric chemistry (smog) and human health (antioxidants)

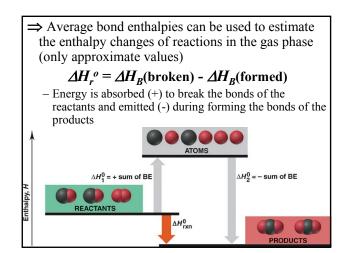
Example: Write the Lewis structure of NO. [N–O]

 $n_{tot} = 5 + 6 = 11 \qquad n_{rem} = 11 - 2 = 9$ $n_{need} = 6 + 6 = 12 \qquad \Rightarrow \text{ add } 1 \text{ more bond}$ $\therefore N = O: \quad \leftrightarrow \quad :N = O$

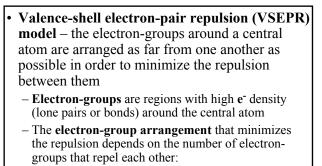


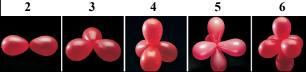

- Expanded valence shells (extended octets) more than 8e⁻ around a central atom
 - Extended octets are formed only by atoms with vacant **d**-orbitals in the valence shell (**p**-elements from the **third or later periods**)
 - Extended octets form when:
 - There are too many electrons $(n_{need} < n_{rem})$ or more than 4 atoms are bonded to the central atom – electron-rich structures \rightarrow place the extra electrons at the central atom
 - Structures with **lower formal charges** can be achieved by forming an extended octet

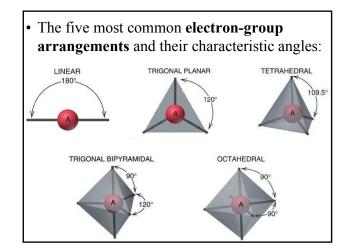
Example: Write the Lewis structure of XeF_4 . $n_{tot} = 8(Xe) + 4 \times 7(F) = 36$ $n_{rem} = 36 - 8 = 28$ $n_{need} = 0(Xe) + 4 \times 6(F) = 24$ $n_{need} < n_{rem}$ 4 extra $e^- \Rightarrow$ add 2 lone pairs at Xe F - Xe - F $\vdots \ddot{F} - Xe - \ddot{F} \vdots$ F $\vdots F$ $\vdots \ddot{F} \vdots$


Example: Write the Lewis structure of I_3^- .		
$n_{tot} = 3 \times 7(I) + 1(charge) = 22$ $n_{rem} = 22 - 4 = 18$ $n_{need} = 4(I) + 2 \times 6(I) = 16$		
$n_{rem} = 22 - 4 = 18$ $n_{need} = 4(I) + 2 \times 6(I) = 16$		
$n_{need} < n_{rem}$ 2 extra e ⁻		
\Rightarrow add 1 <u>extra</u> lone pair at the central I atom after		
completing the octets for all atoms		
$I - I - I$ $\overrightarrow{I} : \overrightarrow{I} - \overrightarrow{I} - \overrightarrow{I}$		
: <u>Ï</u> , <u> </u> <u>I</u> ; <u> </u> <u>I</u> ; <u>I</u> ;		

Example: Select the favored resonance structure of the PO_4^{3-} anion. $\vdots \bigcirc : \neg]^{3-} : \bigcirc : \neg]^{3-}$ $\vdots \bigcirc : \neg]^{2-} : \bigcirc : \neg]^{3-}$ $\vdots \bigcirc : \neg]^{2-} : \bigcirc : \neg]^{3-}$ $\vdots \bigcirc : \bigcirc :]^{3-}$ $\vdots \bigcirc :]^{3-}$ $\vdots \odot :]$

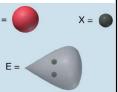


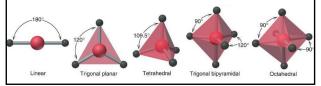

Example: Estimate the standard enthalpy of the reaction $CH_4(g) + 2F_2(g) \rightarrow CH_2F_2(g) + 2HF(g)$ **1.** Lewis structures are needed to get the bond order **2.** Bonds broken (reactants): 4 C-H (412 kJ/mol), 2 F-F (158 kJ/mol) **3.** Bonds formed (products): 2 C-H (412 kJ/mol), 2 C-F (484 kJ/mol), 2 H-F (565 kJ/mol) $\Delta H^o = \Delta H_B$ (broken) - ΔH_B (formed) = [4×412 + 2×158] - [2×412 + 2×484 + 2×565] = -958 kJ (this value is only an estimate, the exact value can be calculated using ΔH_f^o data)

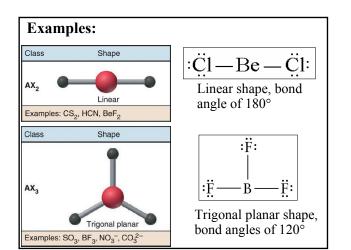


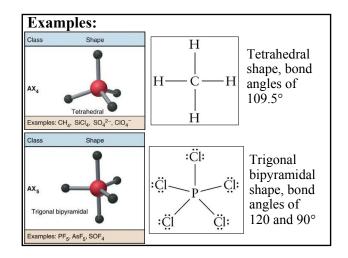
10.2 Molecular Shape and the Valence-Shell Electron-Pair Repulsion Model

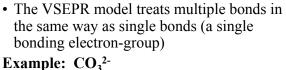
- The chemical and physical properties of compounds are intimately related to their molecular shapes
 - Molecular shapes (geometries) depend on the three-dimensional arrangement of atoms in space
 - Bond distances, bond angles, ...
 - Lewis structures do not represent the true shape of molecules
 - Molecular shapes are studied experimentally, but can be predicted using various theoretical models

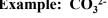


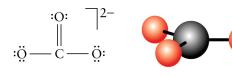


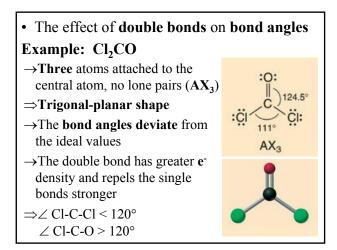

- Both bonding and nonbonding e⁻ groups are considered in the electron-group arrangement
- Only the bonding e groups are considered in the molecular shape since they determine the positions of the atoms (lone pairs are ignored)
- VSEPR classes representations in the form AX_mE_n , where A is the central atom, X is an atom attached to it, and E is a nonbonding

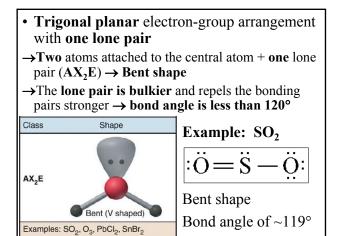

group (lone pair) \Rightarrow *n* is the number of nonbonding groups (lone pairs) and *m* is the number of bonding groups (atoms attached to the central atom)

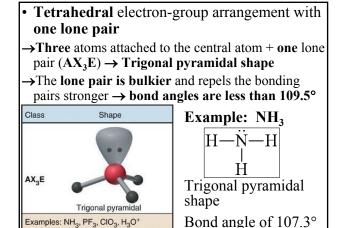


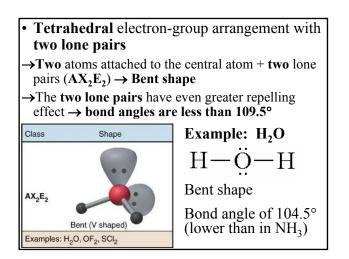

- VSEPR classes AX₂, AX₃, AX₄, AX₅ & AX₆
 All electron-groups surrounding the central atom are bonding groups
 - If all surrounding atoms (X) are the same, the bond angles are equal to the characteristic angles of the arrangement
 - The **molecular shape** and electron-group arrangement have the same name:



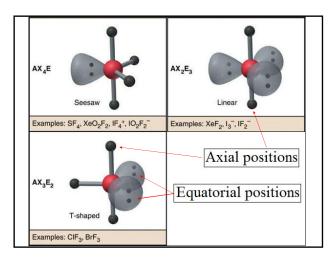


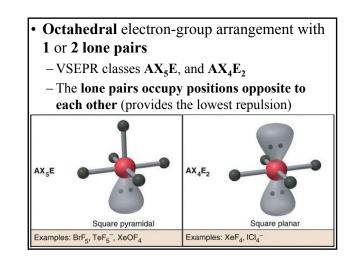


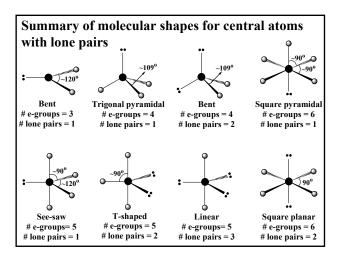




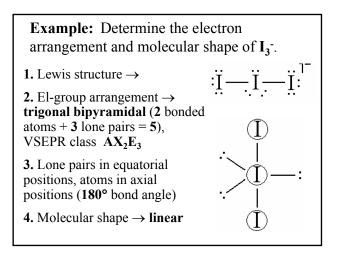
 \rightarrow Three atoms attached to a central atom (AX₃) \rightarrow Trigonal planar shape, bond angles of 120° \rightarrow Any one of the resonance structures can be used to predict the molecular shape

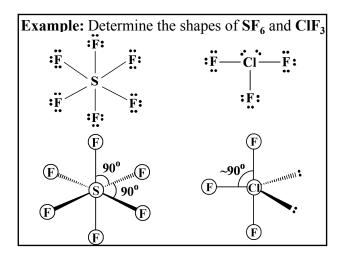


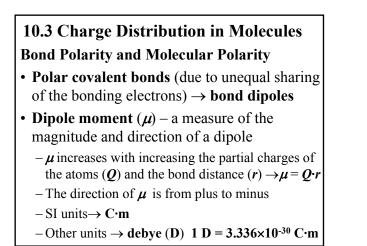



- · Strengths of electron group repulsions lone pair-lone pair > lone pair-bonding pair > bonding pair-bonding pair \Rightarrow In the electron arrangement, lone pairs occupy positions as far from one another and from
- Trigonal bipyramidal electron-group arrangement with 1, 2 or 3 lone pairs

bonding pairs as possible


- VSEPR classes AX_4E , AX_3E_2 and AX_2E_3
- The lone pairs occupy *equatorial* positions (provides more space for the lone pairs and minimizes the repulsion)



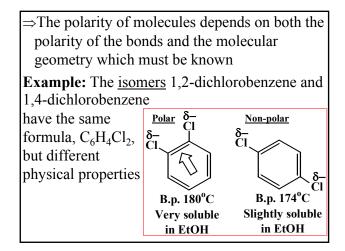


- Steps in determining molecular shapes using the VSEPR model:
 - Write the Lewis structure
 - Determine the electron-group arrangement, ideal bond angles and VSEPR class
 - Place the surrounding atoms and lone pairs in appropriate positions around the central atom and predict any deviations from the ideal bond angles
 - Name the molecular shape
- For molecules with **more than one central atom**, find the electron-group arrangement and corresponding shape around each central atom (one central atom at a time)

- Molecular dipole moment (associated with the molecule as a whole) – can be represented as a sum of the bond dipoles of all bonds
- Nonpolar molecules zero dipole moment
 - Homonuclear diatomic molecules (H₂, O₂, F₂, ...)
- Polyatomic molecules where the bond dipoles cancel each other

CO₂ is nonpolar – the bond dipoles of the **C–O** bonds cancel due to the linear shape

 $\ddot{0}=c=\ddot{0}$


δ______δ_+(

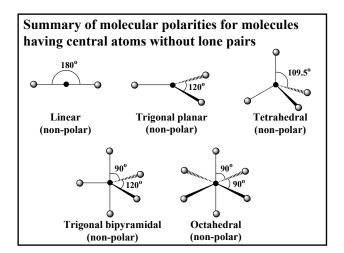
Polar molecules – nonzero dipole moment

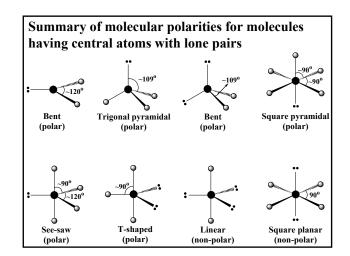
 Heteronuclear diatomic molecules (HF, CO, ...)
 Polyatomic molecules where the bond dipoles do not cancel each other
 H—O
 H₂O is a polar molecule because the

 H_2O is a polar molecule because the bond dipoles of the O-H bonds do not cancel due to the bent molecular shape

- Highly symmetric molecules are normally nonpolar
 - $-AX_n$ molecules (n=2, 3, 4, 5, 6) where X are atoms of the same element
 - Molecules with symmetrically positioned lone pairs (AX_2E_3, AX_4E_2)
- Molecules with asymmetrically positioned lone pairs or different atoms attached to the central atom are normally polar

$$-AX_2E, AX_2E_2, AX_3E, AX_3E_2, AX_4E, AX_5E, ... - CF_3H, CF_2H_2, SO_2(bent), ...$$


Example: Is **PCl₂F₃** a polar molecule?


- 1. The Lewis structure is similar to PCl₅ (five atoms bonded to the P atom, no lone pairs)
- \Rightarrow trigonal bipyramidal shape
- 2. The Cl atoms are larger and take two of the equatorial positions; the F atoms are smaller and take the two axial and one of the equatorial positions

The **P**–**F** dipoles are larger than the **P**–**Cl** dipoles (ΔEN is larger for **P** and **F**)

The molecule is **polar** – the bond dipoles don't cancel (asymmetric arrangement)

