Theories of Covalent Bonding

- Explain the observed shapes, polarities, magnetic and spectroscopic properties of molecules by using quantum mechanics – atomic and molecular orbitals
- The application of quantum mechanics to chemical bonding has led to two bonding theories

11.1 Valence Bond (VB) Theory

- A covalent bonds results from the **overlap of valence atomic orbitals** on neighboring atoms occupied by unpaired electrons and the formation of an electron pair which has highest probability to be between the nuclei
- The two electrons in the pair must have **opposite spins** – Pauli exclusion principle A Hydrogen, H₂ The overlapping orbitals are oriented in a way that provides **maximum** overlap between them B Hydrogen fluoride, HF – *s*-*s* orbital overlap is independent of orientation (H_2) -s and **p** orbitals overlap along the axis of the p orbital (HF) C Fluorine, F2

- The valence orbitals of the central atom must be modified in order to reproduce the experimentally observed bond angles
- **Hybridization** mathematical mixing of two or more valence orbitals on the same atom
 - $-\operatorname{Result} \rightarrow \mathbf{hybrid} \ \mathbf{orbitals}$
 - The hybrid orbitals have shapes and orientations different than the original orbitals being mixed
 - The number of hybrid orbitals equals the number of original orbitals
 - The hybrid orbitals have equal energies (average of the energies of the original orbitals)

Example:

 BF_3 (trigonal planar e-group arrangement) The 2p-orbitals of three F atoms overlap with the three sp^2 -hybrids of B and form three bonds with trigonal planar arrangement (bond angle of 120°); The unhybridized 2p-orbital of B remains empty

Example:

 CH_4 (tetrahedral e-group arrangement) The 1*s*-orbitals of four H atoms overlap with the four *sp*³-hybrids of C and form four bonds with tetrahedral arrangement (bond angles of 109.5°)

• Hybrids involving *d*-Orbitals

- *d*-orbitals can be involved in the hybridization at central atoms from the third or later periods of the table which form expanded octets
- -sp³d Hybridization a combination of one s, three p and one d orbitals (used to describe the trigonal bipyramidal e⁻group arrangement)
- -sp³d² Hybridization a combination of one s, three p and two d orbitals (used to describe the octahedral e⁻group arrangement)

Examples:

 $PCl_5 \ (trigonal \ bipyramidal \ e-group \ arrangement)$

 SF_6 (octahedral e-group arrangement)

11.2 Types of Covalent Bonds

- The overlap (merging) of atomic orbitals can occur in two geometric configurations
 - End-to-end overlap along the internuclear axis $(\sigma$ -bonding)
 - Side-to-side overlap on each side of the internuclear axis (π-bonding)
- Overlap between two *s* orbitals or between one *s* and one *p* orbital always leads to σ-bonds
- Overlap between two *p* orbitals leads to either σbonds or π-bonds

> Overlap involving hybrids always leads to σ -bonds

Example: Ethane (C₂H₆)

- The remaining sp^3 hybrids of the C atoms overlap with each other along the internuclear axis to form a σ -bond
- The electron density increases in the overlapped regions between the nuclei along the internuclear axis

Example: Ethylene (C₂H₄)

- The two C atoms are in *sp*² hybridization (trig. planar)
 For each C, two of the *sp*² hybrids overlap with the 1s orbitals of the H atoms to form four σ-bonds
- The remaining sp^2 hybrids of the C atoms overlap with each other along the internuclear axis to form a σ-bond
- The unhybridized p orbitals of the C atoms overlap with each other side-to-side above and below the internuclear axis to form a π -bond

Example: Acetylene (C₂H₂)

- The two C atoms are in *sp* hybridization (linear) Given For each C, one of the *sp* hybrids overlaps with the 1*s* orbitals of the H atoms to form two σ -bonds The remaining *sp* hybrids of the C atoms overlap with each other along the internuclear axis to form a σ -bond The unhybridized *p* orbitals of the C atoms overlap with each other side-to-side above and below the internuclear axis to form two π -bonds Two lobe Two lobe of one of one π bond π bond c==c-H .н
- Single bonds are always σ -bonds
- **> Double** bonds contain one σ -bond and one π -bond
- > Triple bonds contain one σ -bond and two π -bonds
 - π -bonds are typically weaker than σ -bonds since side-to-side overlap is less extensive than end-to-end overlap
 - ⇒Double (or triple) bonds are less than twice (or three times) stronger than single bonds

Example: CH₂O (trig. planar e-group arrangement)

• Internal rotation in molecules

- Allowed around single bonds (the overlap between the orbitals is preserved during rotation)
- Not allowed around double bonds (rotation disturbs the parallel alignment of the *p*-orbitals and reduces their overlap, the π -bond breaks)
- ⇒Molecules with double bonds can have *cis-trans* isomers (Example: C₂H₂Cl₂)

11.3 Molecular Orbital (MO) Theory

- Limitations of the VSEPR model and the VB theory (based on localized bonding e-pairs) fail in describing:
 - Electron-deficient compounds have too few electrons (B₂H₆, Diborane must have at least 7 bonds (14 e⁻) to bond the 8 atoms, but has only 12 valence e⁻)
 - Radicals odd electron species (NO, 11 e⁻s)
 - Paramagnetism some molecules have paramagnetic properties without having unpaired e⁻s in their Lewis structures (O₂ is paramagnetic, but has no unpaired e⁻s in its Lewis structure)

- The molecular orbital theory resolves these problems by introducing **molecular orbitals**
 - Similar to the atomic orbitals, but spread throughout the whole molecule
 - Can be occupied by no more than 2 electrons with opposite spins – Pauli exclusion principle (explains the significance of e⁻ pairs)
 - Can be occupied by single electrons (provides explanations of odd-electron species and paramagnetic properties)
- The **MO**s are solutions of the Schrödinger equation for the molecule as a whole (only approximate solutions are available)

Formation of MOs in H₂

- As two **H** atoms (*A* and *B*) approach each other, their **1s** orbitals (**1***s*_{*A*} and **1***s*_{*B*}) overlap and interfere with each other
- The interference yields two MOs

 Constructive interference (the amplitudes of the wavefunctions add together) → bonding MO (σ_{1s})

$$\sigma_{1s} = 1s_A + 1s_B$$

- Destructive interference (the amplitudes of the wavefunctions subtract from each other) \rightarrow **antibonding MO** (σ_{1s}^*)

$$\sigma_{1s}^* = 1s_A - 1s_B$$

- MO energy level diagrams
 - Electrons occupy first the lowest energy MOs
 - Each **MO** can accommodate up to two electrons with opposite spins (Pauli)
 - Electrons enter degenerate **MO**s singly adopting parallel spins (Hund)
- Bond order (**BO**)
 - $\mathbf{BO} = (\mathbf{B} \mathbf{A})/2$
- **B** # e⁻s on bonding **MO**s
- **A** # **e**⁻s on antibonding **MO**s
- In general, the higher the BO the stronger the bond

MOs for Period 2 Homonuclear Diatomic Molecules

- Only the valence AOs are considered one 2s orbital and three 2p orbitals for each atom
- When two atoms approach each other:
 - The 2*s* orbitals overlap to form two σ MOs, bonding (σ_{2s}) and antibonding (σ_{2s}^*) (as in H₂)
 - The 2*p* orbitals directed along the internuclear axis overlap to form two σ MOs, bonding (σ_{2p}) and antibonding (σ_{2p}^{*})
 - The **2p** orbitals perpendicular to the internuclear axis (2 from each atom) overlap to form **four** π **MOs**, **two** bonding (π_{2p}) and **two** antibonding (π_{2p}^*)

Example: Be₂

Total # of valence $e^{-s} \rightarrow 2+2=4$ \Rightarrow place 4 e^{-s} on the lowest energy MOs Electron configuration $\rightarrow (\sigma_{2s})^2(\sigma_{2s}^*)^2$ BO = (2 - 2)/2 = 0 \rightarrow (the molecule is unstable) Example: Ne₂ Total # of valence $e^{-s} \rightarrow 8+8=16$ \Rightarrow place 16 e^{-s} on the lowest energy MOs Electron configuration \rightarrow $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^4(\sigma_{2p}^*)^2$ BO = (8 - 8)/2 = 0 \rightarrow (the molecule is unstable)

MOs for Heteronuclear Diatomic Molecules • Diagrams are asymmetric since the AOs of the two atoms have different energies Example: NO Total # of valence $e^{-s} \rightarrow 5+6=11$ \Rightarrow place 11 e^{-s} on the lowest $\uparrow \uparrow \uparrow \uparrow$ energy MOs Electron configuration \rightarrow $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2n})^4(\sigma_{2n})^2(\pi_{2n}^*)^1$ BO = (8 - 3)/2 = 2.5↑↓ →Contains one unpaired e⁻ σ_{2s}^* ↑↓ \rightarrow Explains the existence of **odd** o2s electron molecules (radicals) мо

MOs in Polyatomic Species

- The general approach is similar
- The MOs are build by more than two AOs

 Linear Combinations of Atomic Orbitals (LCAO)
- The **MO**s are spread over the entire molecule - **Delocalization** of electrons
 - Explains the existence of electron deficient molecules (on average less than two electrons may be binding two atoms → multi-center bonds)

Example: B₂H₆

The **H**-bridges are based on a three-center **MO** holding 2e's

• Delocalization and multi-center bonds eliminate the need of resonance structures used by the Lewis's and VB models Example: O_3 Resonance structures: Lowest energy π -MO: $\ddot{\bigcirc} - \ddot{\bigcirc} = \dot{\bigcirc}$:

Ozone, O.