3.2 Determination of Chemical Formulas

- Molecular formulas - numbers of atoms of each element in a molecule
- Empirical formulas - relative numbers of atoms of each element using the smallest whole numbers

Example:

acetic acid $\rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{MF}) \rightarrow \mathrm{CH}_{2} \mathrm{O}$ (EF)
formaldehyde $\rightarrow \mathrm{CH}_{2} \mathrm{O}$ (MF) $\rightarrow \mathrm{CH}_{2} \mathrm{O}$ (EF)
glucose $\rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{MF}) \rightarrow \mathrm{CH}_{2} \mathrm{O}$ (EF)

Example:

- Determine the EF of nicotine, if the mass\% of C, H and N in it are 74.0, 8.7 and 17.3%, respectively.

1. Consider 100 g nicotine
2. $74.0 \mathrm{~g} \mathrm{C}, 8.7 \mathrm{~g} \mathrm{H}, 17.3 \mathrm{~g} \mathrm{~N}$
3. Convert masses to moles:
$74.0 \mathrm{~g} \mathrm{C} \times(1 \mathrm{~mol} \mathrm{C} / 12.01 \mathrm{~g} \mathrm{C})=6.16 \mathrm{~mol} \mathrm{C}$ $8.7 \mathrm{~g} \mathrm{H} \times(1 \mathrm{~mol} \mathrm{H} / 1.008 \mathrm{~g} \mathrm{H})=8.6 \mathrm{~mol} \mathrm{H}$ $17.3 \mathrm{~g} \mathrm{~N} \times(1 \mathrm{~mol} \mathrm{~N} / 14.01 \mathrm{~g} \mathrm{~N})=1.23 \mathrm{~mol} \mathrm{~N}$

Determining Empirical Formulas

- Elemental analysis - gives the masses of the elements in a given mass of the compound or the Mass\% composition
- EF from Mass\% data

1. Consider 100 g of the compound
2. The masses of the elements equal their mass $\%$
3. Convert the masses of the elements to moles
4. Determine the relative number of moles (mol ratio)
5. Simplify the mole ratio to whole numbers

- EF from mass data
- Omit steps 1 and 2 above

4. Mol ratio:
$6.16 \mathrm{~mol} \mathrm{C}: 8.6 \mathbf{~ m o l ~ H ~ : ~} \mathbf{1 . 2 3} \mathbf{~ m o l ~ N}$
5. Simplify the mole ratio:
(divide by the smallest number, and if necessary, multiply by a factor to get whole numbers)
6.16/1.23 $=5.01 \cong 5$
8.6/1.23 = $7.0 \cong 7$
$1.23 / 1.23=1.00 \cong 1$
\rightarrow simplest whole-number ratio:
$\mathbf{5} \mathbf{m o l} \mathrm{C}$: $\mathbf{7} \mathbf{m o l ~ H : ~} \mathbf{1} \mathbf{~ m o l} \mathrm{N}$
$\rightarrow \mathrm{EF}$:
$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$

Determining Molecular Formulas

- The MF is a whole-number multiple of the EF

$$
\Rightarrow M=M_{E F} \times \mathbf{n}
$$

$-\boldsymbol{M} \rightarrow$ molar mass
$-\boldsymbol{M}_{\boldsymbol{E F}} \rightarrow$ EF mass
$-\mathbf{n} \rightarrow$ whole number (number of EFs per molecule)

$$
\Rightarrow \mathrm{n}=\boldsymbol{M} / \boldsymbol{M}_{E F}
$$

- Determining MFs from EFs and molar masses

Combustion Analysis

- A method for elemental analysis of combustible organic compounds through their combustion in excess O_{2}
- The \mathbf{C} in the sample is converted to $\mathbf{C O}_{2}$ which is absorbed in a NaOH absorber and weighed
- The \mathbf{H} in the sample is converted to $\mathbf{H}_{2} \mathbf{O}$ which is absorbed in a $\mathrm{P}_{4} \mathrm{O}_{10}$ absorber and weighed
- If a third element ($\mathrm{O}, \mathrm{N}, \ldots$), it passes through the absorbers
1 mol C from the sample $\rightarrow 1 \mathrm{~mol} \mathrm{CO}$ $2 \mathbf{~ m o l ~ H}$ from the sample $\rightarrow \mathbf{1} \mathbf{m o l ~ H}_{2} \mathrm{O}$

Example:

- The empirical formula of nicotine is $\mathbf{C}_{5} \mathbf{H}_{7} \mathbf{N}$ and its molar mass is $162.23 \mathrm{~g} / \mathrm{mol} . \mathrm{MF}=$?

$$
M_{E F} \rightarrow 5 \times 12.01+7 \times 1.008+1 \times 14.01=81.12 \mathrm{~g} / \mathrm{mol}
$$

$$
\mathrm{n}=\frac{M}{M_{E F}}=\frac{162.23 \mathrm{~g} / \mathrm{mol}}{81.12 \mathrm{~g} / \mathrm{mol}}=2.000 \cong 2
$$

$$
\Rightarrow \mathbf{M F}=2 \times \mathbf{E F}
$$

$$
\mathbf{M F} \rightarrow \mathrm{C}_{10} \mathbf{H}_{14} \mathbf{N}_{2}
$$

Example:

When 0.236 g aspirin is burned in excess \mathbf{O}_{2}, $0.519 \mathrm{~g} \mathrm{CO}_{2}$ and $0.0945 \mathrm{~g} \mathrm{H}_{\mathbf{2}} \mathbf{O}$ are formed.
Determine the mass \% of C, H and O in aspirin.
$>$ Calculate the masses of C and H in the sample based on the masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$:
$>$ Calculate the mass of O by subtracting the masses of C and H from the total mass of the sample

$$
\begin{aligned}
& 0.519 \mathrm{~g} \mathrm{CO}_{2} \times\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right) \times\left(\frac{1 \mathrm{~mol} \mathrm{C}_{1 \mathrm{~mol} \mathrm{CO}_{2}}}{1}\right) \times \\
& \times\left(\frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}\right)=0.142 \mathrm{~g} \mathrm{C}^{2} \\
& 0.0945 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right) \times\left(\frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right) \times \\
& \times\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)=0.0106 \mathrm{~g} \mathrm{H}^{2} \\
& 0.236-0.142-0.0106=0.084 \mathrm{~g} \mathrm{O}
\end{aligned}
$$

3.3 Chemical Equations

- Represent chemical reactions

$$
\text { Reactants } \rightarrow \text { Products }
$$

- Skeletal equations - show identities of reactants and products

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

- Law of conservation of mass
- Atoms are neither created nor destroyed (they only change bonding partners)
- Same atoms are present in the reactants as in the products

$$
\begin{aligned}
& \% \mathrm{C}=\left(\frac{0.142 \mathrm{~g} \mathrm{C}}{0.236 \text { g sample }}\right) \times 100 \%=60.0 \% \\
& \% \mathrm{H}=\left(\frac{0.0106 \text { g H }}{0.236 \text { g sample }}\right) \times 100 \%=4.48 \% \\
& \% \mathrm{O}=\left(\frac{0.084 \text { g O }}{0.236 \text { g sample }}\right) \times 100 \%=35.5 \%
\end{aligned}
$$

The empirical formula can be determined from the percentage composition in a subsequent step

- Balanced chemical equations
- same number of atoms of each element appear on each side of the equation
- stoichiometric coefficients - needed to balance the equations

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

- Microscopic view
($\mathbf{2}$ molec. $\mathrm{H}_{\mathbf{2}}+\mathbf{1}$ molec. $\mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{2}$ molec. $\mathrm{H}_{2} \mathrm{O}$)
- Macroscopic view
($\left.\mathbf{2} \mathbf{~ m o l ~ H} \mathbf{2}+\mathbf{1} \mathrm{mol} \mathrm{O}_{2} \rightarrow \mathbf{2} \mathbf{~ m o l ~ H} \mathbf{H}_{2} \mathrm{O}\right)$
$\left(4.032 \mathrm{~g} \mathrm{H}_{2}+32.00 \mathrm{~g} \mathrm{O}_{2} \rightarrow 36.032 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$
- The stoichiometric coefficients can be treated as relative number of moles of reactants and products
- Physical state symbols
- (s) solid; (l) liquid; (g) gas; (aq) aqueous solution

$$
2 \mathrm{~K}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Balancing Chemical Equations

- Balancing by inspection (only simple cases)
- Change stoichiometric coefficients only
- Never change subscripts in formulas
- Never add other substances to the equation
- Systematic method

1. Write the skeletal equation
2. Balance one element at a time using coefficients

- Start with the elements in the most complex substance and finish with those in the least complex one
- Alternatively, start with the element present in the fewest number of formulas and finish with the element present in the greatest number of formulas
- Use fractional coefficients if necessary

3. If necessary multiply the whole equation by a factor to clear the fractional coefficients
4. Verify that the equation is balanced and the coefficients are the smallest whole numbers
5. Specify physical states

Example: Write the balanced equation for the combustion of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, to carbon dioxide and liquid water.
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ skeletal
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ for C
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ for H
$\mathrm{C}_{2} \mathrm{H}_{6}+(7 / 2) \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ for O
multiply eq. by 2
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+\mathbf{6} \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- Often polyatomic ions can be treated as single entities

Example: Balance the following skeletal eq. in aqueous solution:
$\mathbf{C o}\left(\mathrm{NO}_{3}\right)_{3}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}+\mathrm{NH}_{4} \mathrm{NO}_{3}$
\rightarrow balance Co and $\mathrm{S}:$
$2 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}+\mathrm{NH}_{4} \mathrm{NO}_{3}$
\rightarrow balance NH_{4} and NO_{3} :
$2 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}+6 \mathrm{NH}_{4} \mathrm{NO}_{3}$
\rightarrow add physical state symbols:
$2 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{Co}_{2} \mathrm{~S}_{3}(\mathrm{~s})+\mathbf{6} \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$

