3.4 Calculating Amounts of Reactants and Products

Stoichiometric Equivalences

 Balanced chemical equations contain definite stoichiometric relations between reactants and products → stoichiometric mole ratios

Example: $2H_2 + O_2 \rightarrow 2H_2O$

 $\begin{array}{c} 2 \ mol \ H_2 \Leftrightarrow 1 \ mol \ O_2 \\ 2 \ mol \ H_2 \Leftrightarrow 2 \ mol \ H_2 O \\ 1 \ mol \ O_2 \Leftrightarrow 2 \ mol \ H_2 O \\ \end{array} \right\} \begin{array}{c} \text{stoichiometric} \\ \text{equivalences} \\ \text{equivalences} \\ \end{array} \\ \begin{array}{c} 1 \ mol \ O_2 / 2 \ mol \ H_2 O \\ 2 \ mol \ H_2 O / 2 \ mol \ H_2 \\ 2 \ mol \ H_2 O / 1 \ mol \ O_2 \end{array} \right\} \begin{array}{c} \text{stoichiometric} \\ \text{stoichiometric} \\ \text{mole ratios} \end{array}$

Mole-to-Mole Conversions• Conversion method- The mole ratios are used as conversion factors
(mol given)×(mole ratio) = (mol required)Example: Determine the number of moles of
water produced from 3.4 mol O2. \rightarrow balanced equation: $2H_2 + O_2 \rightarrow 2H_2O$ \rightarrow mole ratio (conversion factor): $[2 \mod H_2O/1 \mod O_2]$ $3.4 \mod O_2 \times \left(\frac{2 \mod H_2O}{1 \mod O_2}\right) = 6.8 \mod H_2O$

Stoichiometric conversion factors are reaction specific
Example: Calculate the amount of O₂ needed to produce 3.5 mol H₂O by combustion of methane (CH₄).
→ balanced equation: CH₄ + 2O₂ → CO₂ + 2H₂O
→ mole ratio (conversion factor): 2 mol O₂ ⇔ 2 mol H₂O
[2 mol O₂/2 mol H₂O]

$$3.5 \operatorname{mol} \mathrm{H}_{2}\mathrm{O} \times \left(\frac{2 \operatorname{mol} \mathrm{O}_{2}}{2 \operatorname{mol} \mathrm{H}_{2}\mathrm{O}}\right) = 3.5 \operatorname{mol} \mathrm{O}_{2}$$

Example: Calculate the mass of oxygen needed to completely burn 5.4 kg of butane (C₄H₁₀). \rightarrow balanced equation: 2C₄H₁₀ + 13O₂ \rightarrow 8CO₂ + 10H₂O \rightarrow mole ratio: [13 mol O₂/2 mol C₄H₁₀] \rightarrow molar masses: C₄H₁₀ \rightarrow 58.1 g/mol O₂ \rightarrow 32.0 g/mol 5.4 kg C₄H₁₀ $\times \left(\frac{10^3 \text{ gC}_4 \text{ H}_{10}}{1 \text{ kg C}_4 \text{ H}_{10}}\right) \times \left(\frac{1 \text{ mol C}_4 \text{ H}_{10}}{58.1 \text{ gC}_4 \text{ H}_{10}}\right) \times \left(\frac{13 \text{ mol O}_2}{2 \text{ mol C}_4 \text{ H}_{10}}\right) \times \left(\frac{32.0 \text{ gO}_2}{1 \text{ mol O}_2}\right) = 1.9 \times 10^4 \text{ gO}_2 = 19 \text{ kg O}_2$

Reaction Yield

- **Theoretical yield** the maximum amount of product that can be expected from a given amount of reactant
- Actual yield the actual amount of product isolated in a reaction

Actual Yield ≤ Theoretical Yield

• Percentage yield:

% Yield =
$$\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%$$

Example: Calculate the theoretical yield of carbon dioxide produced by the combustion of **25.0 g** propane (C_3H_8) in excess oxygen.

 \rightarrow balanced equation:

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

→mass-to-mass conversion:

$$25.0 \text{ g } \text{C}_{3}\text{H}_{8} \times \left(\frac{1 \text{ mol } \text{C}_{3}\text{H}_{8}}{44.09 \text{ g } \text{C}_{3}\text{H}_{8}}\right) \times \left(\frac{3 \text{ mol } \text{CO}_{2}}{1 \text{ mol } \text{C}_{3}\text{H}_{8}}\right) \times \left(\frac{44.01 \text{ g } \text{CO}_{2}}{1 \text{ mol } \text{CO}_{2}}\right) = 74.9 \text{ g } \text{CO}_{2} \rightarrow \text{Theor. Yield}$$

Example: Calculate the percentage yield of carbon dioxide, if the combustion of **25.0** g propane in excess oxygen yields **48.5** g carbon dioxide.

- → theoretical yield (from prev. problem): 74.9 g CO₂ → side reaction (consumes some of the propane): $2C_3H_8 + 7O_2 \rightarrow 6CO + 8H_2O$
- \rightarrow actual yield: 48.5 g CO₂
- \rightarrow percentage yield:

% Yield = $\frac{48.5 \text{ g CO}_2}{74.9 \text{ g CO}_2} \times 100\% = 64.8\%$

Limiting Reactants

- Reactants present in equivalent amounts
 - All reactants are consumed at the same time
- Nonequivalent amounts of reactants
 - One reactant, called **limiting reactant**, is consumed before the others
 - The other reactants are in excess
- Limiting reactant
 - The reaction stops when the limiting reactant is consumed
 - Limits the maximum amount of product achievable (limits the theoretical yield)
 - Stoichiometric calculations based on the limiting reactant give the **lowest amount of product** compared to calculations based on the other reactants

Example: Identify the limiting reactant in the reaction of **5.0 mol H**₂ with **3.0 mol N**₂, and determine the theoretical yield of NH_3 in this reaction.

 \rightarrow balanced equation: $3H_2 + N_2 \rightarrow 2NH_3$

→calculate the theoretical yield based on each of the reactants and chose the **smaller result**:

3.0 mol N₂ ×
$$\left(\frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2}\right) = 6.0 \text{ mol NH}_3$$

5.0 mol H₂ × $\left(\frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2}\right) = 3.3 \text{ mol NH}_3 \rightarrow Theor. Yield$
smaller amount
 \Rightarrow H₂ is the limiting reactant

Example: Calculate the theoretical yield of HNO_3 in the reaction of **28 g NO_2** and **18 g H_2O** by the chemical equation:

$$3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(l) + NO(g).$$

→Calculate the theoretical yield based on each of the reactants and chose the smaller result:

$$18 \text{ g} \text{ H}_{2}\text{O} \times \left(\frac{1 \text{ mol H}_{2}\text{O}}{18.0 \text{ g} \text{ H}_{2}\text{O}}\right) \times \left(\frac{2 \text{ mol HNO}_{3}}{1 \text{ mol H}_{2}\text{O}}\right) \times \\ \times \left(\frac{63.0 \text{ g} \text{ HNO}_{3}}{1 \text{ mol HNO}_{3}}\right) = 130 \text{ g} \text{ HNO}_{3}$$

28 g NO₂ ×
$$\left(\frac{1 \text{ mol NO}_2}{46.0 \text{ g NO}_2}\right)$$
 × $\left(\frac{2 \text{ mol HNO}_3}{3 \text{ mol NO}_2}\right)$ ×
× $\left(\frac{63.0 \text{ g HNO}_3}{1 \text{ mol HNO}_3}\right)$ = 26 g HNO₃ \rightarrow Theor. Yield
smaller amount