3.5 Solution Stoichiometry

- Solutions - homogeneous mixtures
- Solvent and solute(s)
- Solution concentration

Molarity (M)

- Measure of the solute concentration
$M=\left(\frac{\text { amount of solute (mol) }}{\text { volume of solution (L) }}\right) \quad$ or $\quad M=\frac{n}{V}$
- Units - molar (M) $\quad \mathbf{1} \mathbf{~ M}=\mathbf{1} \mathbf{~ m o l} / \mathrm{L}$

Example:

Calculate the molarity of a solution prepared by dissolving 5.33 g NaOH in water using a 100.0 mL volumetric flask.
\Rightarrow convert the mass to moles:
$5.33 \mathrm{~g} \mathrm{NaOH} \times\left(\frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.00 \mathrm{~g} \mathrm{NaOH}}\right)=0.133 \mathrm{~mol} \mathrm{NaOH}$
\Rightarrow convert volume to liters: $100.0 \mathrm{~mL}=\mathbf{0 . 1 0 0 0} \mathrm{L}$
\Rightarrow divide moles by solution volume:
$\frac{0.133 \mathrm{~mol} \mathrm{NaOH}}{0.1000 \mathrm{~L} \text { solution }}=\mathbf{1 . 3 3 \mathrm { mol } \mathrm { NaOH } / \mathrm { L } \rightarrow \mathbf { 1 . 3 3 } \mathrm { M } \mathrm { NaOH }}$

- Preparation of solutions with known molarity
- Transfer a known mass of solute in a volumetric flask
- Dissolve in small amount of water
- Add water to the mark

- Molarity as a conversion factor

Example:

Calculate the mass of NaOH in $\mathbf{2 . 5 0} \mathbf{L}$ of $1.33 \mathbf{M ~ N a O H}$ solution.
$2.50 \mathrm{~L}\left(\frac{1.33 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}}\right)\left(\frac{40.00 \mathrm{~g} \mathrm{NaOH}}{1-\mathrm{mol} \mathrm{NaOH}}\right)=133 \mathrm{~g} \mathrm{NaOH}$

Example:

Calculate the volume of $\mathbf{1 . 3 3} \mathbf{~ m ~ N a O H}$ solution that contains $\mathbf{5 . 0 0} \mathbf{~ m o l ~ N a O H}$.

$$
5.00 \mathrm{~mol} \mathrm{NaOH} \times\left(\frac{1 \mathrm{~L}}{1.33 \mathrm{~mol} \mathrm{NaOH}}\right)=3.76 \mathrm{~L}
$$

Dilution

- Reducing the concentration of the solute by adding more solvent
- Stock solutions - concentrated solutions used to store reagents
- Dilution Procedure
- Use a pipette to measure a small volume of the concentrated solution and transfer it to a volumetric flask
- Add solvent to fill the volumetric flask to the mark
- Dilution calculations
- dilution doesn't change the total \# of moles of solute in the solution
$n=M \times V \quad n_{d}=n_{c} \quad M_{d} \times V_{d}=M_{c} \times V_{c}$

Example:

Calculate the molarity of a solution prepared by dilution of $\mathbf{5 . 0 0} \mathbf{~ m L ~} \mathbf{2 . 0} \mathbf{~ M ~ H C l ~ s t o c k ~}$ solution to $\mathbf{1 0 0 . 0} \mathbf{~ m L}$.

$$
M_{d}=\frac{M_{c} \times V_{c}}{V_{d}}=\frac{2.0 \mathrm{M} \times 5.00 \mathrm{~mL}}{100.0 \mathrm{~mL}}=0.10 \mathrm{M}
$$

Example:

What volume of $\mathbf{0 . 0 8 3 6} \mathbf{M ~ H}_{2} \mathbf{S O}_{4}$ solution will react completely with $\mathbf{1 6 . 4} \mathbf{~ m L ~} 0.255 \mathrm{M} \mathrm{KOH}$.
\Rightarrow balanced equation:

$$
2 \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

\Rightarrow mole ratio: [$\left.\mathbf{1} \mathbf{~ m o l ~ H} \mathbf{H}_{2} \mathrm{SO}_{4} / \mathbf{2} \mathbf{~ m o l ~ K O H}\right]$

$$
\begin{aligned}
& 16.4 \times 10^{-3} \mathrm{~L} \times\left(\frac{0.255 \mathrm{~mol} \mathrm{KOH}}{1 \mathrm{~L}}\right) \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{KOH}}\right) \\
& \times\left(\frac{1 \mathrm{~L}}{0.0836 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right)=25.0 \times 10^{-3} \mathrm{~L}=25.0 \mathrm{~mL}
\end{aligned}
$$

Limiting reactant problems in solution

Example:

What mass of \mathbf{H}_{2} gas can be produced by the reaction of $\mathbf{2 . 5} \mathrm{g} \mathrm{Zn}$ with $2.0 \mathrm{~L} \mathbf{0 . 1 5} \mathbf{~ m ~ H C l}$ solution. The other product is $\mathrm{ZnCl}_{2}(\mathrm{aq})$.
\Rightarrow balanced equation:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathbf{H}_{2}(\mathrm{~g})
$$

\Rightarrow mole ratios: [$1 \mathbf{~ m o l ~ H} / 2 \mathbf{~ m o l ~ H C l}$]
[$1 \mathbf{~ m o l ~ H} \mathbf{H}_{2} / 1 \mathrm{~mol} \mathrm{Zn}$]
\Rightarrow Calculate the mass of $\mathbf{H}_{\mathbf{2}}$ produced based on both reactants and choose the smaller amount
\Rightarrow calculation based on HCl :
$2.0 \mathrm{~L} \times\left(\frac{0.15 \mathrm{~mol} \mathrm{HCt}}{1 \mathrm{~L}}\right) \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{HCt}}\right) \times\left(\frac{2.02 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)$
$=0.30 \mathbf{g ~ H}_{2}$
\Rightarrow calculation based on $\mathbf{Z n}$:
$2.5 \mathrm{~g} \mathrm{Zn} \times\left(\frac{1 \mathrm{~mol} \mathrm{Zn}}{65.4 \mathrm{~g} \mathrm{Zn}}\right) \times\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Zn}}\right) \times\left(\frac{2.02 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)$
$=0.077 \mathrm{~g} \mathrm{H}_{2} \leftarrow$ smaller amount
\Rightarrow The calculation based on Zn yields less product so Zn is the limiting reactant

