3.5 Solution Stoichiometry • Solutions – homogeneous mixtures – Solvent and solute(s) – Solution concentration Molarity (M) • Measure of the solute concentration $M = \left(\frac{\text{amount of solute (mol)}}{\text{volume of solution (L)}}\right) \text{ or } M = \frac{n}{V}$

• Units – molar (M) 1 M = 1 mol/L

Example:

Calculate the molarity of a solution prepared by dissolving **5.33 g NaOH** in water using a **100.0 mL** volumetric flask.

 \Rightarrow convert the mass to moles:

5.33 g NaOH×
$$\left(\frac{1 \text{ mol NaOH}}{40.00 \text{ g NaOH}}\right) = 0.133 \text{ mol NaOH}$$

 \Rightarrow convert volume to liters: 100.0 mL = 0.1000 L

 \Rightarrow divide moles by solution volume:

 $\frac{0.133 \text{ mol NaOH}}{0.1000 \text{ L solution}} = 1.33 \text{ mol NaOH/L} \rightarrow 1.33 \text{ M NaOH}$

- Preparation of solutions with known molarity
 - Transfer a known mass of solute in a volumetric flask
 - -Dissolve in small amount of water
 - Add water to the mark

 Molarity as a conversion factor
Example:
Calculate the mass of NaOH in 2.50 L of 1.33 M NaOH solution.
2.50 $\operatorname{L}\left(\frac{1.33 \operatorname{mol} \operatorname{NaOH}}{1 \operatorname{L}}\right) \left(\frac{40.00 \text{ g NaOH}}{1 \operatorname{mol} \operatorname{NaOH}}\right) = 133 \text{ g NaOH}$
Example:
Calculate the volume of 1.33 M NaOH solution that contains 5.00 mol NaOH .
5.00 mol NaOH× $\left(\frac{1 \text{ L}}{1.33 \text{ mol NaOH}}\right)$ = 3.76 L

Dilution

- Reducing the concentration of the solute by adding more solvent
- Stock solutions concentrated solutions used to store reagents
- Dilution Procedure
 - Use a pipette to measure a small volume of the concentrated solution and transfer it to a volumetric flask
 - Add solvent to fill the volumetric flask to the mark

- Dilution calculations
 - dilution doesn't change the total # of moles of solute in the solution

$$n = M \times V$$
 $n_d = n_c$ $M_d \times V_d = M_c \times V_c$

Example:

Calculate the molarity of a solution prepared by dilution of **5.00 mL 2.0 M HCl** stock solution to **100.0 mL**.

$$M_d = \frac{M_c \times V_c}{V_d} = \frac{2.0 \text{ M} \times 5.00 \text{ mL}}{100.0 \text{ mL}} = 0.10 \text{ M}$$

Limiting reactant problems in solution **Example:**

What mass of H_2 gas can be produced by the reaction of 2.5 g Zn with 2.0 L 0.15 M HCl solution. The other product is $ZnCl_2(aq)$.

 \Rightarrow balanced equation:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

 \Rightarrow mole ratios: [1 mol H₂/2 mol HCl]

 $[1 \text{ mol } H_2/1 \text{ mol } Zn]$

 \Rightarrow Calculate the mass of H₂ produced based on both reactants and choose the smaller amount

