

The Major Classes of Chemical Reactions

4.1 The Role of Water as a Solvent

Water participates actively in the dissolution process

The dissolution process

- **Hydration** (solvation) of the solute particles in solution
 - The solute particles (ions, molecules, ...) are surrounded by water (solvent) molecules
 - The solute particles are evenly spread throughout the solution

- Electrolytes produce ions in solution (resulting solution conducts electricity)
 - Strong electrolytes completely ionize in solution (soluble salts, strong acids and bases such as NaCl, HCl, KOH, ...)
 - Weak electrolytes partially ionize in solution (weak acids and bases such as H_2S , NH_3 , ...)
- Nonelectrolytes do not ionize in solution (resulting solution does not conduct electricity)
 - Molecular compounds (except acids and bases) such as H₂O, sugar, acetone, methanol, ...

- The molecule of water is **polar**
 - The O atom pulls the shared electrons stronger
 - The O is partially negative and the Hs are partially positive
 - The molecule is bent
- $\Rightarrow The molecule has a positive and a negative pole \rightarrow dipole \qquad \delta -$

• The water dipoles surround the ions on the surface of an **ionic** compound and pull them away from the crystal → hydration → electrolyte solution

- The water dipoles surround the molecules on the surface of a covalent compound and interact with the polar bonds in it → hydration →
 - If the molecules do not dissociate (most covalent compounds) → non-electrolytes
 - If the molecules dissociate to ions (for example in acids which contain polar X−H bonds) → electrolytes
- The **solubility** of a compound depends in large part on the relative strengths of the attractive forces between its ions or molecules and the forces of hydration

Example:

How many Na⁺ ions are present in 8.2 mL of a 0.15 M Na₂SO₄(aq) solution?

Na₂SO₄ → strong electrolyte ⇒ Na₂SO₄(s) $\xrightarrow{H_2O}$ 2Na⁺(aq) + SO₄²⁻(aq) 0.0082 L $\left(\frac{0.15 \text{ mol Na}_2SO_4}{1L}\right) \left(\frac{2 \text{ mol Na}^+}{1 \text{ mol Na}_2SO_4}\right)$ $\left(\frac{6.022 \times 10^{23} \text{ Na}^+ \text{ ions}}{1 \text{ mol Na}^+}\right) = 1.5 \times 10^{21} \text{ Na}^+ \text{ ions}$ The H⁺ ion interacts very strongly with water and forms the hydronium ion, H₃O⁺ H⁺(aq) + H₂O(I) → H₃O⁺(aq)
-H₃O⁺ is strongly hydrated in water solutions by 1, 2 or even 3 H₂O molecules (H₅O₂⁺, H₇O₃⁺, H₉O₄⁺)
-H⁺ and H₃O⁺ (including the hydrated forms) are equivalent expressions of the hydrogen ion

4.2 Equations for Reactions in Aqueous Solution

• Overall **molecular equation** (all reactants and products in their undissociated form)

 $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$

• **Complete** (total) **ionic equation** (all strong electrolytes are completely dissociated to ions (ionized) in aqueous solutions

 $[NaCl(aq) \rightarrow Na^{+}(aq), Cl^{-}(aq)]$

$$Ag^{+}(aq) + NO_{3}(aq) + Na^{+}(aq) + Cl(aq) \rightarrow$$

 \rightarrow AgCl(s) + Na⁺(aq) + NO₃⁻(aq)

• **Spectator ions** – present on both sides of the equation (can be canceled)

 $Ag^+(aq) + NO_3^-(aq) + Na^+(aq) + Cl^-(aq) \rightarrow$

 \rightarrow AgCl(s) + Na⁺(aq) + NO₃⁻(aq)

• Net ionic equation – no spectator ions

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

• For simplicity, we can omit **(aq)** after the symbols of all ions in aqueous solutions (assume all ions in solution as aqueous)

 $Ag^+ + Cl^- \rightarrow AgCl(s)$

Example:

Write the net ionic equation corresponding to the following molecular equation:

$$\begin{split} &Na_2CO_3(aq) + H_2SO_4(aq) \rightarrow \\ & \rightarrow Na_2SO_4(aq) + H_2O(l) + CO_2(g) \\ \Rightarrow & \text{Complete ionic eq:} \\ & 2Na^+ + CO_3^{2-} + 2H^+ + SO_4^{2-} \rightarrow \\ & \rightarrow 2Na^+ + SO_4^{2-} + H_2O(l) + CO_2(g) \\ \Rightarrow & \text{Net ionic eq:} \\ & CO_3^{2-} + 2H^+ \rightarrow H_2O(l) + CO_2(g) \end{split}$$