4.3 Precipitation Reactions

- Formation of an insoluble product (precipitate) after mixing of two electrolyte solutions
 - The driving force of precipitation reactions is the elimination of ions from the solution by formation of an insoluble product

Example:

When mercury(I) nitrate and potassium phosphate solutions are mixed, mercury(I) phosphate precipitates. Write the net ionic equation.

 $mercury(I) \rightarrow Hg_2^{2+} \rightarrow Hg_2(NO_3)_2$

 \Rightarrow Skeletal eq:

 $Hg_2(NO_3)_2(aq) + K_3PO_4(aq) \rightarrow$

 \rightarrow (Hg₂)₃(PO₄)₂(s) + KNO₃(aq)

\Rightarrow Overall balanced eq:
$3Hg_2(NO_3)_2(aq) + 2K_3PO_4(aq) \rightarrow$
\rightarrow (Hg ₂) ₃ (PO ₄) ₂ (s) + 6KNO ₃ (aq)
⇒Complete ionic eq:
$3\mathrm{Hg_2}^{2+} + 6\mathrm{NO_3}^{-} + 6\mathrm{K}^{+} + 2\mathrm{PO_4}^{3-} \rightarrow$
\rightarrow (Hg ₂) ₃ (PO ₄) ₂ (s) + 6K ⁺ + 6NO ₃ ⁻
\Rightarrow Net ionic eq:
$3Hg_2^{2+} + 2PO_4^{3-} \rightarrow (Hg_2)_3(PO_4)_2(s)$

Predicting the outcome of precipitation

- Precipitation reactions are classified as **double** replacement (metathesis) reactions - exchange of ions leads to an insoluble combination of ions

Table 4.1 Solubility Rules for Ionic Compounds in Water

Soluble Ionic Compounds

Insoluble Ionic Compounds

- All common compounds of Group 1A(1) ions (Li⁺, Na⁺, K^+ , etc.) and ammonium ion (NH₄⁺) are soluble.
- All common nitrates (NO₃⁻), acetates (CH₃COO⁻ or $C_2H_3O_2^{-}$), and most perchlorates (ClO₄⁻) are soluble.
- All common chlorides (Cl⁻), bromides (Br⁻), and and Hg_2^{2+} .
- All common sulfates (SO_4^{2-}) are soluble, *except* those of Ca^{2+} , Sr^{2+} , Ba^{2+} , Ag^+ , Pb^{2+} and Hg_2^{2+} .
- 1. All common metal hydroxides are insoluble, except those of Group 1A(1) and the larger members of Group 2A(2) (beginning with Ca^{2+}).
- 2. All common carbonates $(CO_3^{2^-})$ and phosphates $(PO_4^{3^-})$ are insoluble, except those of Group 1A(1) and NH4⁺.
- iodides (I^-) are soluble, *except* those of Ag⁺, Pb²⁺, Cu⁺, 3. All common sulfides are insoluble *except* those of Group 1A(1), Group 2A(2), and NH_4^+ .

Example:

Predict the outcome of the mixing of silver nitrate and potassium carbonate solutions.

 \Rightarrow Ions present in the solution:

Ag⁺, NO₃⁻, K⁺, CO₃²⁻

⇒consider all possible combinations of ions to find if an insoluble product can form:

 Ag^+ and CO_3^{2-} form insoluble Ag_2CO_3

⇒Net ionic eq: $2Ag^+ + CO_3^{2-} \rightarrow Ag_2CO_3(s)$ Note: The net ionic equation can be predicted directly from the formula of the precipitate.

• Arrhenius bases – release hydroxide ions, OH⁻, in water solutions

Examples:

 \Rightarrow NaOH dissolves in water and dissociates to Na⁺ and OH⁻.

NaOH(s) $\xrightarrow{H_2O}$ Na⁺ + OH⁻

 \Rightarrow Ammonia gas, NH₃, dissolves in water and produces NH₄⁺ and OH⁻.

 $NH_3(g) + H_2O(l) \rightarrow NH_4^+ + OH^-$

4.4 Acid-Base Reactions

- Acids - sharp, sour taste; Bases - soapy, bitter taste

- Arrhenius acids release hydrogen ions, H⁺(aq) [or H₃O⁺(aq)], in water solutions
- Acidic hydrogen atoms in molecules - can be released as H⁺ ions
 - formulas normally begin with the acidic Hs

Examples:

 \Rightarrow HCl, H₂SO₄, HCN,

 $\mathrm{HCl}(\mathbf{g}) \xrightarrow{\mathbf{H}_2\mathbf{O}} \mathrm{H}^+ + \mathrm{Cl}^-$

 $\mathrm{HCl}(\mathbf{g}) + \mathrm{H}_{2}\mathrm{O}(\mathbf{l}) \rightarrow \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{Cl}^{-}$

Strong acids – almost completely ionized in aqueous solutions
⇒HBr(g) + H₂O(l) → H₃O⁺ + Br⁻ (~100% ionized)
The strong acids in aqueous solution are: HCl(aq), HBr(aq), HI(aq), HNO₃, H₂SO₄, HClO₄, and HClO₃
Weak acids – only partially ionized in aqueous solutions (HF, H₂S, organic acids ...)
⇒CH₃COOH(aq) + H₂O(l) → → H₃O⁺ + CH₃COO⁻ (~1% ionized)

• Strong bases – almost completely ionized in aqueous solutions (oxides and hydroxides of alkali and alkaline earth metals)

 $\Rightarrow \text{KOH}(s) \xrightarrow{\text{H}_2\text{O}} \text{K}^+ + \text{OH}^- \qquad (\sim 100)$

(~100% ionized)

- The strong bases in aqueous solution are: Group I hydroxides, Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂
- Weak bases only partially ionized in aqueous solutions (ammonia, amines, ...)

 $\Rightarrow \mathrm{NH}_{3}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+} + \mathrm{OH}^{-}$

(~1% ionized)

Neutralization

$acid + base \rightarrow salt + water {\scriptstyle (or other products)}$

• Salt – an ionic compound with a cation from the base and an anion from the acid

 $\mathrm{H_2SO_4(aq)} + 2\mathrm{KOH(aq)} \rightarrow \mathrm{K_2SO_4(aq)} + 2\mathrm{H_2O(l)}$

 Neutralization reactions are also viewed as double replacement (metathesis) reactions – exchange of ions leads to a salt and water

Example: Predict the products of the reaction between carbonic acid and calcium hydroxide.

 $H_2CO_3(aq) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + 2H_2O$

Proton Transfer

• Net ionic equations for reactions between strong acids and bases

 $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$ $H^+ + Cl^- + K^+ + OH^- \rightarrow K^+ + Cl^- + H_2O(l)$

 $\Rightarrow H^+ + OH^- \rightarrow H_2O(I)$

 $-H^+$ is present in the form of H_3O^+

$\Rightarrow H_3O^+ + OH^- \rightarrow 2H_2O(I)$

Net ionic equation for all strong acid/strong base reactions (transfer of a proton from H_3O^+ to OH^-)

- The driving force of strong acid-base reactions is the elimination of ions (H⁺ and OH⁻) from the solution by formation of water
- Net ionic equations for reactions between weak acids and strong bases

Example:

 $HF(aq) + NaOH(aq) \rightarrow NaF(aq) + H_2O(l)$

 $HF(aq) \rightarrow$ weak acid (only partially ionized)

 $HF(aq) + Na^{+} + OH^{-} \rightarrow Na^{+} + F^{-} + H_2O(l)$

 $\Rightarrow HF(aq) + OH^{-} \rightarrow F^{-} + H_2O(l)$

 \Rightarrow transfer of a proton from HF to OH⁻

Gas Formation Reactions

• Reactions of salts of weak or volatile acids with strong acids

Example:

 $ZnS(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2S(g)$

 $ZnS(s) + 2H^{+} + 2CI^{-} \rightarrow Zn^{2+} + 2CI^{-} + H_2S(g)$

 $\Rightarrow ZnS(s) + 2H^+ \rightarrow Zn^{2+} + H_2S(g)$

 $-H^+$ is present in the form of H_3O^+

 $\Rightarrow ZnS(s) + 2H_3O^+ \rightarrow Zn^{2+} + H_2S(g) + 2H_2O(l)$ $\Rightarrow transfer of a proton from H_3O^+ to S^{2-}$