Acid-base titrations

- Titrations use measurements of volumes
- Based on stoichiometric acid-base reactions between the analyzed solution (analyte) and a solution with known concentration (titrant)
- Equivalence point - the amount of titrant added is stoichiometrically equivalent to the amount of analyte present in the sample
- Indicators - change color at the equivalence point (signal the end point of the titration)

- The titrant (acid or base) is added slowly to the analyte (base or acid) until the indicator changes color
- At the end point the amount of acid is equivalent to the amount of base - the concentration of the analyte is calculated from the measured volumes of the solutions and the titrant concentration

4.5 Redox Reactions

Oxidation and reduction

- Transfer of electrons from one species to another
- Driving force of redox reactions - movement of electrons from an atom with less to an atom with more attraction for electrons

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

NaCl is an ionic compound:

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{s})+2 \mathrm{Cl}^{-}(\mathrm{s})
$$

$$
\mathrm{Na}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{s}) \quad \Rightarrow \text { loss of } 1 \mathrm{e}^{-} \text {by } \mathrm{Na}
$$

$$
\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{s}) \quad \Rightarrow \text { gain of } 2 \mathrm{e}^{-} \text {by } \mathrm{Cl}_{2}
$$

Result \rightarrow transfer of electrons from Na to Cl_{2}

- Oxidation - loss of electrons (Na is oxidized)
- term originates from reactions of substances with oxygen
- Reduction - gain of electrons $\left(\mathrm{Cl}_{2}\right.$ is reduced)
- term originates from reactions of metal oxides with $\mathrm{C}, \mathrm{CO}, \mathrm{H}_{2}$, etc. to extract (reduce) the pure metal
- Oxidation and reduction can not occur independently
- electrons gained by one species must be lost by another (e e^{-}gained by Cl_{2} are lost by Na)
$-\mathrm{Cl}_{2}$ oxidizes Na and Na reduces Cl_{2}

Oxidation Numbers (Ox\#)

- Oxidation number (oxidation state) - the charge an atom would have if the \mathbf{e}^{-s} in polar bonds are not shared but are transferred completely to the atom with more attraction for $\mathbf{e}^{-} \mathrm{s}$
- Assigned to each element in a substance
- Oxidation numbers can help determine whether substances are oxidized or reduced
- Oxidation - increase in Ox\#
- Reduction - decrease in Ox\#
$\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{s}) \quad \Rightarrow \mathbf{O x} \#$ increases $(0 \rightarrow+1)$
$\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{s}) \Rightarrow \mathbf{O x} \#$ decreases $(0 \rightarrow-1)$
- The transfer of electrons during redox reactions is not always complete

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathrm{H}_{2} \mathrm{O}$ is a covalent compound with polar bonds in which the electrons are not shared equally

$$
\mathbf{H}^{\delta+}-\mathbf{O}^{\delta-}-\mathbf{H}^{\delta+}
$$

\Rightarrow Electrons are shifted from H to O

$$
\mathbf{H} \rightarrow \mathbf{H}^{\delta+} \quad \Rightarrow \text { loss of } \mathbf{e}^{-} \text {density by } \mathbf{H}
$$

$\mathrm{O} \rightarrow \mathrm{O}^{\delta-} \quad \Rightarrow$ gain of e^{-}density by O
Result \rightarrow incomplete transfer of electrons from H to O

- Rules for assigning $\mathrm{Ox} \#$
- Monoatomic ions $\rightarrow \mathbf{O x} \#=$ charge of ion
- Free elements $\rightarrow \mathbf{O x} \#=0$
$-\mathrm{F} \rightarrow \mathrm{Ox} \#=-1$
$-\mathbf{O} \rightarrow \mathbf{O x} \#=-2$ (except in combination with F and in peroxides)
$-\mathbf{H} \rightarrow \mathbf{O x} \#=+\mathbf{1}$ (in combination with nonmetals)
$\rightarrow \mathbf{O x \#}=\mathbf{- 1}$ (in combination with metals)
- Halogens $\rightarrow \mathbf{O x} \#=\mathbf{- 1}$ (except in comb. with O or other halogen higher in the group)
- The sum of Ox\# of all elements in a species equals the charge of the species

Example:

Assign the oxidation numbers of all elements in $\mathbf{N O}_{3}{ }^{-}$and $\mathbf{H C l O}_{3}$.
$\mathrm{NO}_{3}{ }^{-} \quad \Rightarrow \mathrm{O}(-2)$ by rule
$3 \times(-2)+1 \times(X)=-1 \quad \Rightarrow X=+5 \Rightarrow N(+5)$
$\mathrm{HClO}_{3} \Rightarrow \mathrm{O}(-2)$ by rule

$$
\Rightarrow \mathbb{H}(+1) \text { by rule }
$$

$3 \times(-2)+1 \times(+1)+1 \times(\mathbf{X})=0$
$\Rightarrow \mathrm{X}=+5 \quad \Rightarrow \mathrm{Cl}(+5)$

- Oxidizing agent - causes oxidation
(removes electrons from the species being oxidized)
- is the species being reduced
- contains an element which undergoes a decrease in Ox\# (reduction)
- Reducing agent - causes reduction (supplies electrons to the species being reduced)
- is the species being oxidized
- contains an element which undergoes an increase in $\mathrm{Ox} \#$ (oxidation)

