Acid-base titrations

- Titrations use measurements of volumes
- Based on stoichiometric acid-base reactions between the analyzed solution (analyte) and a solution with known concentration (titrant)
- Equivalence point the amount of titrant added is stoichiometrically equivalent to the amount of analyte present in the sample
- **Indicators** change color at the equivalence point (signal the **end point** of the titration)

- The titrant (acid or base) is added slowly to the analyte (base or acid) until the indicator changes color
- At the end point the amount of acid is equivalent to the amount of base – the concentration of the analyte is calculated from the measured volumes of the solutions and the titrant concentration

Example: A 25.0 mL H₂SO₄ solution is titrated with 16.4 mL 0.255 M KOH solution. What is the molarity of the acid solution. \Rightarrow balanced equation: 2KOH(aq) + H₂SO₄(aq) \rightarrow K₂SO₄(aq) + 2H₂O(l) \Rightarrow mole ratio: [1 mol H₂SO₄/2 mol KOH] 16.4 × 10⁻³ L × $\left(\frac{0.255 \text{ mol KOH}}{1 \text{ L}}\right)$ × $\left(\frac{1 \text{ mol H}_2\text{SO}_4}{2 \text{ mol KOH}}\right)$ = = 2.09 × 10⁻³ mol H₂SO₄ $\frac{2.09 \times 10^{-3} \text{ mol H}_2\text{SO}_4}{25.0 \times 10^{-3} \text{ L}}$ = 8.36 × 10⁻² M H₂SO₄

4.5 Redox Reactions

Oxidation and reduction

- Transfer of electrons from one species to another
- Driving force of redox reactions movement of electrons from an atom with less to an atom with more attraction for electrons

 $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$

NaCl is an ionic compound:

 $2Na(s) + Cl_2(g) \rightarrow 2Na^+(s) + 2Cl^-(s)$ $Na(s) \rightarrow Na^+(s) \implies loss of 1e^- by Na$ $Cl_2(g) \rightarrow 2Cl^-(s) \implies gain of 2e^- by Cl_2$ Result \rightarrow transfer of electrons from Na to Cl_2

- Oxidation loss of electrons (Na is oxidized)

 term originates from reactions of substances with oxygen
- **Reduction** gain of electrons (Cl₂ is reduced)
 - term originates from reactions of metal oxides with C, CO, H₂, etc. to extract (reduce) the pure metal
- Oxidation and reduction can not occur independently
 - electrons gained by one species must be lost by another (e⁻ gained by Cl₂ are lost by Na)
 - $-Cl_2$ oxidizes Na and Na reduces Cl_2

Oxidation Numbers (Ox#)

- Oxidation number (oxidation state) the charge an atom would have if the e⁻s in polar bonds are not shared but are transferred completely to the atom with more attraction for e⁻s
 - Assigned to each element in a substance
- Oxidation numbers can help determine whether substances are oxidized or reduced
 - -**Oxidation** increase in Ox#
 - $\, \textbf{Reduction} \text{decrease in } Ox \#$

Na(s) → Na⁺(s) \Rightarrow Ox# increases (0 → +1) Cl₂(g) → 2Cl⁻(s) \Rightarrow Ox# decreases (0 → -1) The transfer of electrons during redox reactions is not always complete 2H₂(g) + O₂(g) → 2H₂O(l) H₂O is a covalent compound with polar bonds in which the electrons are not shared equally H^{δ+}- O^{δ-}- H^{δ+} ⇒ Electrons are shifted from H to O H → H^{δ+} ⇒ loss of e⁻ density by H O → O^{δ-} ⇒ gain of e⁻ density by O

Result \rightarrow incomplete transfer of electrons from H to O

- **Rules** for assigning Ox#
 - Monoatomic ions \rightarrow Ox# = charge of ion
 - Free elements \rightarrow Ox# = 0
 - $-\mathbf{F} \rightarrow \mathbf{O}\mathbf{x} # = -1$
 - $-\mathbf{O} \rightarrow \mathbf{Ox\#} = -2$ (except in combination with F and in peroxides)
 - $-H \rightarrow Ox\# = +1$ (in combination with nonmetals) $\rightarrow Ox\# = -1$ (in combination with metals)
 - Halogens \rightarrow Ox# = -1 (except in comb. with O or other halogen higher in the group)
 - The sum of Ox# of all elements in a species equals the charge of the species

Example: Assign the oxidation numbers of all elements in NO₃⁻ and HClO₃. NO₃⁻ \Rightarrow O (-2) by rule $3\times(-2) + 1\times(X) = -1$ $\Rightarrow X = +5 \Rightarrow N (+5)$ HClO₃ \Rightarrow O (-2) by rule \Rightarrow H (+1) by rule $3\times(-2) + 1\times(+1) + 1\times(X) = 0$ $\Rightarrow X = +5$ \Rightarrow Cl (+5)

- Oxidizing agent causes oxidation (removes electrons from the species being oxidized)
 - $-\operatorname{is}$ the species $\operatorname{\boldsymbol{being}}$ reduced
 - contains an element which undergoes a decrease in Ox# (reduction)
- Reducing agent causes reduction (supplies electrons to the species being reduced)
 - is the species being oxidized
 - contains an element which undergoes an increase in Ox# (oxidation)

