

- Molecular model of the gaseous state
- Molecules are in constant, rapid, random motion (explains the absence of definite shape, miscibility, low viscosity)
- Molecules are widely separated (explains the absence of definite volume, low density, compressibility)

5.2 Pressure

- Gas molecules collide with each other an the walls of the container \rightarrow molecules exert force on the walls

Pressure $=\frac{\text { Force }}{\text { Area }}$ $P=\frac{F}{\boldsymbol{A}}$

Gases and the Kinetic Molecular Theory

- Importance in atmospheric phenomena, gas phase reactions, combustion engines, etc.

5.1 The Physical States of Matter

- The condensed states - liquid and solid
- The gaseous state
- Gas volume changes greatly with pressure
- Gas volume changes greatly with temperature
- Gases have low viscosity (flow easily)
- Gases have low density (~ 1000 times lower than liquids and solids)
- Gases are miscible in all proportions
- Atmospheric pressure $\left(\boldsymbol{P}_{\text {atm }}\right)$ - caused by the gravitational pull of the Earth \rightarrow molecules exert force on all objects
$>$ Barometers the atmospheric pressure (Torricelli)
- no pressure above the mercury column (vacuum)
- the weight of the Hg column balances $\boldsymbol{P}_{\boldsymbol{a t m}}$
- the height of the Hg column is proportional to $\boldsymbol{P}_{\boldsymbol{a t m}}$

g - acceleration of free fall $\left(\mathbf{9 . 8 1} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}\right.$)
\boldsymbol{d} - density of $\mathrm{Hg}\left(\mathbf{1 3 5 4 6} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}\right)$
V - volume of Hg column
\boldsymbol{h} - height of Hg column ($\mathbf{0 . 7 6 0} \mathbf{~ m}$ at sea level)
\boldsymbol{A} - area of Hg column base
$P_{a t m}=P_{H g}=\frac{F}{A} \quad F=m_{H g} g$
$m_{H g}=d V=d h A \quad \Rightarrow \quad F=d h A g$
$\Rightarrow P_{\text {atm }}=\frac{d h A g}{A}=d h g$
$P_{\text {atm }}=13546 \times 0.760 \times 9.81=1.01 \times 10^{5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}^{2}$

Manometers - measure the pressure of gases in containers

- Close-end and open-end manometers

Example:

Convert 630.0 Torr to atmospheres and kilopascals.
630.0 Torr $\times\left(\frac{1 \mathrm{~atm}}{760 \mathrm{Torr}}\right)=0.8289 \mathrm{~atm}$
630.0 Torr $\times\left(\frac{1 \mathrm{~atm}}{760 \mathrm{Torr}}\right) \times\left(\frac{101325 \mathrm{~Pa}}{1 \mathrm{~atm}}\right)$
$=8.399 \times 10^{4} \mathrm{~Pa}=83.99 \mathrm{kPa}$

5.3 The Gas Laws

- Relate the parameters of the gaseous state pressure, volume, temperature, and number of moles

Boyle's Law

- At constant temperature (T) the pressure (P) of a fixed amount of gas is inversely proportional to its volume (V)
\Rightarrow At constant T and n :
$P=\frac{\boldsymbol{k}}{\boldsymbol{V}} \quad \boldsymbol{k} \rightarrow$ constant (depends on \boldsymbol{T} and \boldsymbol{n}) $\boldsymbol{P V}=\boldsymbol{k}=$ constant $\quad \mathbf{V} \downarrow \Leftrightarrow \mathbf{P} \uparrow$
- Assume two states of a gas at constant \boldsymbol{T}
- state $1 \rightarrow \boldsymbol{P}_{1}, V_{1}$
- state $2 \rightarrow P_{2}, V_{2}$

$$
\begin{gathered}
P_{1} V_{1}=k \quad P_{2} V_{2}=k \\
P_{1} V_{1}=P_{2} V_{2}
\end{gathered}
$$

Example: A 2.0 L sample of oxygen at 10 atm is transferred to a 15.0 L container at constant temperature. What is the new pressure?
$V_{1}=2.0 \mathrm{~L} \quad P_{1}=10 \mathrm{~atm} \quad V_{2}=15.0 \mathrm{~L} \quad P_{2}=?$

$$
P_{2}=\frac{P_{1} V_{1}}{V_{2}}=\frac{10 \mathrm{~atm} \times 2.0 \mathrm{~L}}{15.0 \mathrm{~L}}=1.3 \mathrm{~atm}
$$

$\boldsymbol{P}_{1} \boldsymbol{V}_{1}=\boldsymbol{k}$

$V(\mathrm{~mL})$	P (torr)	$\frac{1}{P}$	$P V$ $($ torr $\cdot \mathrm{mL})$
20.0	780	0.00128	1.56×10^{4}
15.0	1038	0.000963	1.56×10^{4}
10.0	1560	0.000641	1.56×10^{4}
5.0	3112	0.000321	1.56×10^{4}

