

Gases and the Kinetic Molecular Theory

- Importance in atmospheric phenomena, gas phase reactions, combustion engines, etc.

5.1 The Physical States of Matter

- The condensed states liquid and solid
- The gaseous state
 - -Gas volume changes greatly with pressure
 - -Gas volume changes greatly with temperature
 - -Gases have low viscosity (flow easily)
 - Gases have low density (~1000 times lower than liquids and solids)
 - -Gases are miscible in all proportions

- Molecular model of the gaseous state
 - Molecules are in constant, rapid, random motion (explains the absence of definite shape, miscibility, low viscosity)
 - Molecules are widely separated (explains the absence of definite volume, low density, compressibility)

5.2 Pressure

• Gas molecules collide with each other an the walls of the container \rightarrow molecules exert force on the walls $Pressure = \frac{Force}{Area}$ $P = \frac{F}{A}$

Example: Convert 630.0 Torr to atmospheres and kilopascals.
630.0 Torr× $\left(\frac{1 \text{ atm}}{760 \text{ Torr}}\right) = 0.8289 \text{ atm}$
630.0 Torr × $\left(\frac{1 \text{ atm}}{760 \text{ Torr}}\right)$ × $\left(\frac{101325 \text{ Pa}}{1 \text{ atm}}\right)$ = 8.399×10 ⁴ Pa = 83.99 kPa

5.3 The Gas Laws

• Relate the parameters of the gaseous state – pressure, volume, temperature, and number of moles

Boyle's Law

• At constant temperature (*T*) the pressure (*P*) of a fixed amount of gas is inversely proportional to its volume (*V*)

 \Rightarrow At constant *T* and *n*:

$$P = \frac{k}{V}$$
 $k \rightarrow$ constant (depends on T and n)

PV = k = constant

$$V \downarrow \Leftrightarrow P \uparrow$$

• Assume two states of a gas at constant T- state $1 \rightarrow P_1$, V_1 - state $2 \rightarrow P_2$, V_2 $P_1V_1 = k$ $P_2V_2 = k$ $P_1V_1 = P_2V_2$ Example: A 2.0 L sample of oxygen at 10 atm

Example: A 2.0 L sample of oxygen at 10 atm is transferred to a 15.0 L container at constant temperature. What is the new pressure?

$$V_1 = 2.0 \text{ L}$$
 $P_1 = 10 \text{ atm}$ $V_2 = 15.0 \text{ L}$ $P_2 = ?$

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{10 \text{ atm} \times 2.0 \text{ L}}{15.0 \text{ L}} = 1.3 \text{ atm}$$