Charles's Law

• At constant pressure (*P*) the volume (*V*) of a fixed amount of gas is proportional to its absolute temperature (*T*)

 \Rightarrow At constant *P* and *n*:

$$V = k'T$$
 $k' \rightarrow \text{constant} (\text{depends on } P \text{ and } n)$

$$\frac{V}{T} = k' \qquad \qquad T \uparrow \Leftrightarrow V'$$

• Charles's law helped devise the absolute temperature scale (Lord Kelvin)

•	Assume tw	o states of a	gas at (constant P
	$-$ state 1 \rightarrow	T_{1}, V_{1}		
	$-$ state 2 \rightarrow	T_2, V_2		
	$\frac{V_1}{T_1} = k'$	$\frac{V_2}{T_2} = k'$	⇒	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$
F	vamnle• A	halloon is fille	d with	501 He gas a

Example: A balloon is filled with 5.0 L He gas at 15°C. The temperature is changed to 35°C. What is the new volume of the balloon?

$$T_1 = 15^{\circ}\text{C} = 288 \text{ K}$$
 $V_1 = 5.0 \text{ L}$
 $T_2 = 35^{\circ}\text{C} = 308 \text{ K}$ $V_2 = ?$
 $V_2 = \frac{V_1T_2}{T_1} = \frac{5.0 \text{ L} \times 308 \text{ K}}{288 \text{ K}} = 5.3 \text{ L}$

Variations of Charles's law – Amontons's law

• At constant volume (V) the pressure (P) of a fixed amount of gas is proportional to its absolute temperature (T)

 \Rightarrow At constant *V* and *n*:

P = k''Tk'' \rightarrow constant (depends on V and n)

$$\frac{P}{T} = k'' \qquad \qquad T \uparrow \Leftrightarrow P \uparrow$$

• Assume two states of a gas at constant V
- state
$$1 \rightarrow T_1$$
, P_1
- state $2 \rightarrow T_2$, P_2
 $\frac{P_1}{T_1} = k''$ $\frac{P_2}{T_2} = k''$ \Rightarrow $\frac{P_1}{T_1} = \frac{P_2}{T_2}$
Example: A cylinder containing N₂ gas at 15°C
and 50 atm is moved to a new location at 35°C.
What is the new pressure in the cylinder?
 $T_1 = 15^{\circ}C = 288 \text{ K}$ $P_1 = 50 \text{ atm}$
 $T_2 = 35^{\circ}C = 308 \text{ K}$ $P_2 = ?$
 $P_2 = \frac{P_1T_2}{T_1} = \frac{50 \text{ atm} \times 308 \text{ K}}{288 \text{ K}} = 53 \text{ atm}$

Avogadro's Law

• At constant temperature (*T*) and pressure (*P*) the volume (*V*) of a gas is proportional to its amount (*n*)

– At constant *T* and *P*:

$$V = k''' n$$
 $k''' \rightarrow \text{constant} (\text{depends on } T, P)$

$$\frac{V}{n} = k''' \qquad n \uparrow \Leftrightarrow V \uparrow$$

• Molar volume (V_m) – the volume of one mole of a substance

$$V_m = V/n$$

- Avogadro's principle
 - At constant T and P equal number of moles of different gases occupy equal volumes
 - Molar volumes of gases are very similar (V/n = constant)
- Assume two states of a gas at constant *T* and *P*

- state
$$1 \rightarrow V_1$$
, n_1
- state $2 \rightarrow V_2$, n_2

$$\frac{V_1}{n_1} = k^{\prime\prime\prime} \qquad \frac{V_2}{n_2} = k^{\prime\prime\prime} \qquad \Rightarrow \qquad \frac{V_1}{n_1} = \frac{V_2}{n_2}$$

The Ideal Gas Law				
$V = k \frac{1}{P}$	Boyle's Law			
V = k'T	Charles's Law			
V = k'''n	Avogadro's Law			
• Combination of the three laws:				
$V = R \frac{nT}{P}$	<i>R</i> – proportionality constant			
$PV = nRT \rightarrow$ ideal gas law				
$R \rightarrow$ universal gas constant				

 \Rightarrow There is no need to memorize the mathematical expression for the individual gas laws since they can all be derived from the ideal gas law

• Ideal gas – obeys the ideal gas law • *R* is determined experimentally *R* = 0.08206 L·atm/mol·K *R* = 8.314 J/mol·K • Assume two states of a gas – state 1 \rightarrow *P*₁, *V*₁, *n*₁, *T*₁ – state 2 \rightarrow *P*₂, *V*₂, *n*₂, *T*₂ $\frac{P_1V_1}{n_1T_1} = R \qquad \frac{P_2V_2}{n_2T_2} = R \implies \frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$ Note: *T* must always be in Kelvin

Example: A 5.0 L gas sample at 1.0 atm and 10°C is moved to a 2.0 L container and heated to 300°C. What is the new pressure?

$$P_{1} = 1.0 \text{ atm} \qquad V_{1} = 5.0 \text{ L} \qquad T_{1} = 10^{\circ}\text{C} = 283 \text{ K}$$

$$P_{2} = ? \qquad V_{2} = 2.0 \text{ L} \qquad T_{2} = 300^{\circ}\text{C} = 573 \text{ K}$$

$$n_{1} = n_{2}$$

$$\frac{P_{1}V_{1}}{n_{1}T_{1}} = \frac{P_{2}V_{2}}{n_{2}T_{2}} \implies P_{2} = \frac{P_{1}V_{1}}{n_{1}T_{1}} \times \frac{n_{2}T_{2}}{V_{2}}$$

$$P_{2} = \frac{P_{1}V_{1}T_{2}}{T_{1}V_{2}} = \frac{1.0 \text{ atm} \times 5.0 \text{ L} \times 573 \text{ K}}{283 \text{ K} \times 2.0 \text{ L}} = 5.1 \text{ atm}$$

Example: A 3.0 g sample of methane, CH₄, is placed in a 2.0 L container at 22°C. What is the pressure in the container? PV = nRT $V = 2.0 L \qquad T = 22°C = 295 K$ moles of CH₄ (*n*): $n = 3.0 \text{ g CH}_4 \times \left(\frac{1 \text{ mol CH}_4}{16.0 \text{ g CH}_4}\right) = 0.19 \text{ mol CH}_4$ $P = \frac{nRT}{V} = \frac{0.19 \text{ mol} \times 0.08206 \frac{L \cdot \text{ atm}}{\text{mol} \cdot \text{K}} \times 295 \text{ K}}{2.0 L} = 2.3 \text{ atm}$

Standard conditions

• Standard temperature and pressure (STP)

P = 1 atm; $T = 0^{\circ}C = 273.15$ K

• The molar volume of the ideal gas at STP

