Charles's Law

- At constant pressure (P) the volume (V) of a fixed amount of gas is proportional to its absolute temperature (T)
\Rightarrow At constant P and n :

$$
\begin{array}{cc}
V=k^{\prime} T & k^{\prime} \rightarrow \text { constant }(\text { depends on } P \text { and } n) \\
\frac{V}{T}=k^{\prime} & T \uparrow \Leftrightarrow V \uparrow
\end{array}
$$

- Charles's law helped devise the absolute temperature scale (Lord Kelvin)
- Assume two states of a gas at constant \boldsymbol{P}
- state $1 \rightarrow \boldsymbol{T}_{1}, V_{1}$

$$
- \text { state } 2 \rightarrow T_{2}, V_{2}
$$

$$
\frac{V_{1}}{T_{1}}=k^{\prime} \quad \frac{V_{2}}{T_{2}}=k^{\prime} \quad \Rightarrow \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Example: A balloon is filled with 5.0 L He gas at $15^{\circ} \mathrm{C}$. The temperature is changed to $35^{\circ} \mathrm{C}$. What is the new volume of the balloon?
$\begin{array}{ll}T_{1}=15^{\circ} \mathrm{C}=288 \mathrm{~K} & V_{1}=5.0 \mathrm{~L} \\ T_{2}=35^{\circ} \mathrm{C}=308 \mathrm{~K} & V_{2}=?\end{array}$
$T_{2}=35^{\circ} \mathrm{C}=308 \mathrm{~K} \quad V_{2}=$?

$$
V_{2}=\frac{V_{1} T_{2}}{T_{1}}=\frac{5.0 \mathrm{~L} \times 308 \mathrm{~K}}{288 \mathrm{~K}}=5.3 \mathrm{~L}
$$

Variations of Charles's law - Amontons's law

- At constant volume (V) the pressure (P) of a fixed amount of gas is proportional to its absolute temperature (T)
\Rightarrow At constant V and n :
$\boldsymbol{P}=\boldsymbol{k}^{\prime \prime} \boldsymbol{T}$
$\boldsymbol{k}^{\prime \prime} \rightarrow$ constant (depends on V and n)

$$
\frac{P}{T}=k^{\prime \prime} \quad T \uparrow \Leftrightarrow P \uparrow
$$

- Assume two states of a gas at constant V
- state $1 \rightarrow \boldsymbol{T}_{1}, \boldsymbol{P}_{1}$
- state $2 \rightarrow \boldsymbol{T}_{2}, \boldsymbol{P}_{2}$

$$
\frac{P_{1}}{T_{1}}=k^{\prime \prime} \quad \frac{P_{2}}{T_{2}}=k^{\prime \prime} \Rightarrow \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

Example: A cylinder containing N_{2} gas at $15^{\circ} \mathrm{C}$ and 50 atm is moved to a new location at $35^{\circ} \mathrm{C}$. What is the new pressure in the cylinder?
$T_{1}=15^{\circ} \mathrm{C}=288 \mathrm{~K} \quad P_{1}=50 \mathrm{~atm}$
$T_{2}=35^{\circ} \mathrm{C}=308 \mathrm{~K} \quad P_{2}=$?
$P_{2}=\frac{P_{1} T_{2}}{T_{1}}=\frac{50 \mathrm{~atm} \times 308 \mathrm{~K}}{288 \mathrm{~K}}=53 \mathrm{~atm}$

- Avogadro's principle
- At constant T and P equal number of moles of different gases occupy equal volumes
- Molar volumes of gases are very similar ($V / n=$ constant)
- Assume two states of a gas at constant \boldsymbol{T} and \boldsymbol{P}
- state $1 \rightarrow \boldsymbol{V}_{\boldsymbol{1}}, \boldsymbol{n}_{\boldsymbol{1}}$
- state $2 \rightarrow \boldsymbol{V}_{2}, \boldsymbol{n}_{2}$
$\frac{V_{1}}{n_{1}}=k^{\prime \prime \prime} \quad \frac{V_{2}}{n_{2}}=k^{\prime \prime \prime} \Rightarrow \quad \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$

Avogadro's Law

- At constant temperature (T) and pressure (P) the volume (V) of a gas is proportional to its amount (n)
- At constant T and P :

$$
\begin{array}{cc}
V=k^{\prime \prime \prime} n & \left.k^{\prime \prime \prime} \rightarrow \text { constant (depends on } T, P\right) \\
\frac{V}{n}=k^{\prime \prime \prime} & n \uparrow \Leftrightarrow V \uparrow
\end{array}
$$

- Molar volume $\left(V_{m}\right)$ - the volume of one mole of a substance

$$
V_{m}=V / n
$$

The Ideal Gas Law

$$
\begin{array}{ll}
V=k \frac{1}{P} & \text { Boyle's Law } \\
V=k^{\prime} T & \\
V=k^{\prime \prime \prime} n & \\
\text { Charles's Law } \\
\text { Avogadro's Law }
\end{array}
$$

- Combination of the three laws:

$$
V=R \frac{n T}{P} \quad R-\text { proportionality constant }
$$

$$
P V=n R T \quad \rightarrow \quad \text { ideal gas law }
$$

$$
R \rightarrow \text { universal gas constant }
$$

Example: A 5.0 L gas sample at 1.0 atm and $10^{\circ} \mathrm{C}$ is moved to a 2.0 L container and heated to $300^{\circ} \mathrm{C}$. What is the new pressure?
$P_{1}=1.0 \mathrm{~atm} \quad V_{1}=5.0 \mathrm{~L} \quad T_{1}=10^{\circ} \mathrm{C}=283 \mathrm{~K}$ $P_{2}=? \quad V_{2}=2.0 \mathrm{~L} \quad T_{2}=300^{\circ} \mathrm{C}=573 \mathrm{~K}$

$$
n_{1}=n_{2}
$$

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \quad \Rightarrow \quad P_{2}=\frac{P_{1} V_{1}}{n_{1} T_{1}} \times \frac{n_{2} T_{2}}{V_{2}}
$$

$$
P_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}}=\frac{1.0 \mathrm{~atm} \times 5.0 \mathrm{~K} \times 573 \mathrm{~K}}{283 \mathrm{~K} \times 2.0 \mathrm{~L}}=5.1 \mathrm{~atm}
$$

- Ideal gas - obeys the ideal gas law
- \boldsymbol{R} is determined experimentally

$$
\begin{aligned}
& \boldsymbol{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K} \\
& \boldsymbol{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

- Assume two states of a gas
- state $1 \rightarrow \boldsymbol{P}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{1}}, \boldsymbol{n}_{\mathbf{1}}, \boldsymbol{T}_{\boldsymbol{1}}$
- state $2 \rightarrow \boldsymbol{P}_{2}, \boldsymbol{V}_{2}, \boldsymbol{n}_{2}, \boldsymbol{T}_{2}$
$\frac{P_{1} V_{1}}{n_{1} T_{1}}=R \quad \frac{P_{2} V_{2}}{n_{2} T_{2}}=R \quad \Rightarrow \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$
Note: T must always be in Kelvin

Example: A 3.0 g sample of methane, CH_{4}, is placed in a 2.0 L container at $22^{\circ} \mathrm{C}$. What is the pressure in the container?
$P V=n R T$
$V=2.0 \mathrm{~L} \quad T=22^{\circ} \mathrm{C}=295 \mathrm{~K}$
moles of $\mathrm{CH}_{4}(n)$:
$n=3.0 \mathrm{~g} \mathrm{CH}_{4} \times\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.0 \mathrm{~g} \mathrm{CH}_{4}}\right)=0.19 \mathrm{~mol} \mathrm{CH}_{4}$
$P=\frac{n R T}{V}=\frac{0.19 \mathrm{~mol} \times 0.08206}{2.0 \mathrm{~L}} \frac{\frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 295 \mathrm{~K}}{2}=2.3 \mathrm{~atm}$

Standard conditions

- Standard temperature and pressure (STP)

$$
P=1 \mathrm{~atm} ; T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}
$$

- The molar volume of the ideal gas at STP

$$
\begin{gathered}
V_{m}=\frac{V}{n}=\frac{n R T / P}{n}=\frac{R T}{P} \\
V_{m}=\frac{R T}{P}=\frac{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273.15 \mathrm{~K}}{1 \mathrm{~atm}}=22.41 \frac{\mathrm{~L}}{\mathrm{~mol}}
\end{gathered}
$$

