

- Units in calculations

- Units are treated just like pure numbers

Area $=4$ in $\times 6$ in $=(4 \times 6)($ in \times in $)=24$ in 2

- Systems of units (metric, English, SI, ...)
- Equalities between units

$$
1 \mathrm{in}=2.54 \mathrm{~cm} \quad 1 \mathrm{mi}=1.609 \mathrm{~km}
$$

- Conversion factors - ratios between two equal or equivalent units (derived from equalities)

$$
\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=1 \quad \text { or } \quad \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=1
$$

1.3 The Unit Conversion Method

- Units of measurement
- Measurements - quantitative observations
- Units - standards used to compare
measurements (yard \rightarrow standard for comparison of length measurements)
- A measured quantity is reported as a number and a unit
(Measured quantity) $=$ number \times unit
5.5 seconds $=5.5 \times 1 \mathrm{~s}$
- Unit conversions (old unit \rightarrow new unit)
- Quantity remains the same; units change

$$
\text { new unit }=\text { old unit } \times(\text { conv } . \text { factor })
$$

conv.factor $=\frac{\text { new unit }}{\text { old unit }}$

$$
\text { new unit }=\text { old unit } \times \frac{\text { new unit }}{\stackrel{\text { old unit }}{ }}
$$

- The old units cancel

1.4 Measurement in Scientific Study

- Systems of units (metric, English, SI, ...)
- The International System of units (SI)
- Based on the metric system
- SI base units

Table 1.2 SI Base Units

Physical Quantity (Dimension)	Unit Name	Unit Abbreviation
Mass	kilogram	kg
Length	meter	m
Time	second	s
Temperature	kelvin	K
Electric current	ampere	A
Amount of substance	mole	mol
Luminous intensity	candela	cd

Example:

- The gas mileage of a car is $\mathbf{3 5} \mathbf{~ m i} / \mathbf{g a l}$. How many km can the car travel on a full 10 gal tank of gas?
$1 \mathrm{mi}=1.609 \mathrm{~km}$
$10 g a l \times \frac{35 m i}{1 g a l}=350 \mathrm{mi}$

$$
350 \mathrm{mi} \times \frac{1.609 \mathrm{~km}}{1 m i}=563 \mathrm{~km}
$$

- Prefixes used with SI units (denote powers of 10)
- Used to express very small or very large quantities

Table 1.3 Common Decimal Prefixes Used with SI Units

		Meaning		
Prefix* *	Prefix Symbol	Number	Word	Multiple ${ }^{+}$
tera	T	$1,000,000,000,000$	trillion	10^{12}
giga	G	$1,000,000,000$	billion	10^{9}
mega	M	$1,000,000$	million	10^{6}
kilo	k	1,000	thousand	10^{3}
hecto	h	100	hundred	10^{2}
deka	da	10	ten	10^{1}
-	-	1	one	10^{0}
deci	d	0.1	tenth	10^{-1}
centi	c	0.01	hundredth	10^{-2}
milli	m	0.001	thousandth	10^{-3}
micro	μ	0.000001	millionth	10^{-6}
nano	n	0.000000001	billionth	10^{-9}
pico	p	0.000000000001	trillionth	10^{-12}
femto	f	0.000000000000001	quadrillionth	10^{-15}

- Examples:

$1 \mathrm{~mm}=10^{-3} \times(1 \mathrm{~m})=10^{-3} \mathrm{~m}$
$1 \mathrm{MW}=10^{6} \times(1 \mathrm{~W})=10^{6} \mathrm{~W}$
$1 \mu \mathrm{~s}=10^{-6} \times(1 \mathrm{~s})=10^{-6} \mathrm{~s}$
$1 \mathrm{ng}=10^{-9} \times(1 \mathrm{~g})=10^{-9} \mathrm{~g}$

- Mass and weight
- Mass is constant (depends on the amount of matter)
- Weight can vary with the strength of the gravitational field
- Mechanical balances actually measure mass

Example:

A jet engine consumes $\mathbf{1 . 1} \mathbf{~ g a l}$ of fuel per second. How many liters of fuel does the engine need in order to operate for $\mathbf{1 . 5}$ hours? $1 \mathrm{gal}=3.785 \mathrm{~L} \quad 1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$

Plan:

$1.1 \mathrm{gal} / \mathrm{s} \rightarrow$? L/s
1.5 Hours \rightarrow ? minutes \rightarrow ? seconds

Seconds $\times \mathrm{L} / \mathrm{s} \rightarrow$? L

Example (cont.):

$1.1 \frac{\mathrm{gal}}{\mathrm{s}} \times\left(\frac{3.785 \mathrm{~L}}{1 \text { gal }}\right)=4.2 \frac{\mathrm{~L}}{\mathrm{~s}}$
$1.5 h \times\left(\frac{60 \text { minn }}{1 / h}\right) \times\left(\frac{60 s}{1 \text { mín }}\right)=5400 s$
$5400 s^{\prime} \times\left(\frac{4.2 L}{1 s^{\prime}}\right)=22000 L$

