6.2 Reaction Enthalpy

- If only expansion work is done:

$$
\Delta E=q+w=q-P_{e x t} \Delta V
$$

- At constant volume (rigid, sealed container):

$$
\Delta V=0 \Rightarrow \Delta E=q \quad \rightarrow \Delta E=q_{v}
$$

- The heat transferred at constant volume, q_{v}, is equal to the change in the internal energy
- At constant pressure (open container), if the system pressure equals the external pressure:

$$
P=P_{\text {ext }} \quad \Delta E=q-P \Delta V
$$

Exothermic and endothermic processes

- Exothermic process - the system releases heat in the surroundings $(\boldsymbol{q}<\mathbf{0})$ - at constant pressure $\left(\Delta \boldsymbol{H}=\boldsymbol{q}_{\boldsymbol{p}}\right) \Rightarrow \Delta \boldsymbol{H}<\mathbf{0}$
- Endothermic process - the system absorbs heat from the surroundings $(\boldsymbol{q}>\mathbf{0})$ - at constant pressure $\left(\Delta \boldsymbol{H}=\boldsymbol{q}_{p}\right) \Rightarrow \Delta \boldsymbol{H}>\mathbf{0}$
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaOH}(\mathrm{aq})+$ heat (exo.)
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})+$ heat $\xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$ (endo.)
- Enthalpy (\boldsymbol{H}) - a state function defined as:

$$
\begin{gathered}
H=E+P V \\
\Delta H=\Delta E+\Delta(P V)
\end{gathered}
$$

- At constant pressure $\rightarrow \Delta(P V)=P \Delta V$
$\Delta H=\Delta E+P \Delta V \quad$ and $\quad \Delta E=q-P \Delta V$
$\Delta H=q-P \Delta V+P \Delta V=q \quad \rightarrow \quad \Delta H=q_{p}$
- The heat transferred at constant pressure, q_{p}, is equal to the change in the enthalpy
- For processes at constant pressure

$$
\Delta E=q_{p}-P \Delta V=\Delta H-P \Delta V
$$

- Enthalpy diagrams

A Exothermic process

B Endothermic process

$$
\begin{gathered}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\text { heat } \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+\text { heat } \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

- The heat released or absorbed during a chemical change is due to differences in the bond strengths of reactants and products

6.3 Heat Measurements

- Heat transfer in or out of an object can be estimated by measuring the temperature change in the object
- Heat capacity - the heat required to increase the temperature of an object by $\mathbf{1 ~ K}$ (or ${ }^{\circ} \mathbf{C}$)

$$
\text { Heat capacity }=q / \Delta T
$$

- units \mathbf{J} / \mathbf{K} or $\mathbf{J} /{ }^{\circ} \mathbf{C}$
- The heat capacity is an extensive property that increases with the size of the object
- Calorimeter - a device used to measure heat transfers
- thermally insulated container with a known heat capacity supplied with a thermometer
- the system is placed in the calorimeter which serves as its surroundings
- the heat transfer is estimated from the temperature change of the calorimeter contents
- the system can be a chemical reaction
- Types of calorimeters
- constant pressure calorimeters ($\boldsymbol{q}_{p}=\boldsymbol{\Delta H}$)
- constant volume calorimeters $\left(\boldsymbol{q}_{\boldsymbol{v}}=\boldsymbol{\Delta E}\right)$
- Specific heat capacity (c) - the heat capacity per unit mass of the object

$$
\boldsymbol{c}=(\text { Heat capacity }) / \boldsymbol{m} \rightarrow \boldsymbol{c}=\boldsymbol{q} / \boldsymbol{m} \Delta \boldsymbol{T}
$$

- units $\mathbf{J} / \mathbf{g} \cdot \mathbf{K}$ or $\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}$ (see Table 6.2)

$$
q=m c \Delta T
$$

- Molar heat capacity (\boldsymbol{C}) - the heat capacity per one mole of a substance (units $\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K}$)
Example: Calculate the heat needed to warm up 2.5 g of ice from $\mathbf{- 2 0}$ to $-\mathbf{5}^{\circ} \mathrm{C}$. $(c=\mathbf{2 . 0 3} \mathrm{J} / \mathrm{g} \cdot \mathrm{K})$
$\Delta T=T_{f}-T_{i}=-5^{\circ} \mathrm{C}-\left(-20^{\circ} \mathrm{C}\right)=15^{\circ} \mathrm{C}$ $q=m c \Delta T=2.5 \mathrm{~g} \times 2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 15^{\circ} \mathrm{C}=+76 \mathrm{~J}$

- Specific heats of dilute aqueous solutions are taken to be the same as that of water.
Example: A reaction between $\mathbf{5 0} \mathbf{g}$ of dilute HCl and $\mathbf{5 0} \mathbf{g}$ of dilute NaOH takes place in a coffee-cup calorimeter. The temperature rises by $2.1^{\circ} \mathrm{C}$. What is the heat of the reaction.

$$
\begin{aligned}
& c \approx c_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \\
& m=50 \mathrm{~g}+50 \mathrm{~g}=100 \mathrm{~g} \quad \Delta T=+\mathbf{2 . 1} 1^{\circ} \mathrm{C} \\
& q_{\text {sys }}=-q_{\text {surr }}=-\boldsymbol{m c} \Delta T \\
& =\mathbf{- 1 0 0} \mathrm{g} \times \mathbf{4 . 1 8 ~ J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times \mathbf{2 . 1} 1^{\circ} \mathrm{C}=\mathbf{- 8 . 8} \times 10^{\mathbf{2}} \mathrm{J} \\
& =\mathbf{- 0 . 8 8} \mathrm{kJ} \quad \rightarrow \quad \boldsymbol{q}_{p}=\Delta H=\mathbf{- 0 . 8 8} \mathrm{kJ}
\end{aligned}
$$

Example: $\mathbf{2 7} \mathbf{g}$ of brass at $\mathbf{1 0 5}^{\mathbf{}} \mathbf{C}$ are placed in a coffee-cup calorimeter filled with $\mathbf{1 0 0} \mathbf{g}$ of water at $\mathbf{2 0}^{\circ} \mathrm{C}$. The water temperature increases to $22^{\circ} \mathrm{C}$. Calculate the specific heat capacity of brass. $\left(c_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& q_{\text {water }}=-q_{\text {brass }} \Rightarrow(m c \Delta T)_{w}=-(m c \Delta T)_{b} \\
& (c)_{b}=-\frac{(m c \Delta T)_{w}}{(m \Delta T)_{b}}=-\frac{100 \mathrm{~g} \times 4.18 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \times(22-20)^{\circ} \mathrm{C}}{27 \mathrm{~g} \times(22-105)^{\circ} \mathrm{C}} \\
& =-\frac{100 \times 4.18 \times 2}{27 \times(-83)} \frac{\mathrm{J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}=0.37 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}
\end{aligned}
$$

Example:

A sample of $\mathbf{1 . 8 2} \mathbf{g}$ sugar is burned in a bomb calorimeter with heat capacity $9.20 \mathrm{~kJ} / \mathrm{K}$.
The temperature rises by $3.2^{\circ} \mathrm{C}$. What is the heat of the reaction per gram of sugar.
$q_{\text {sys }}=-q_{\text {surr }}=-($ Heat capacity $) \times \Delta T$
$=-9.20 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 3.2^{\circ} \mathrm{C}=-29 \mathrm{~kJ}$
$q_{v}=\Delta E=-29 \mathrm{~kJ}$
Heat per gram $=-29 \mathrm{~kJ} / 1.82 \mathrm{~g}=-16 \mathrm{~kJ} / \mathrm{g}$

