

7.1 The Nature of Light

- Light is electromagnetic radiation - a stream of energy in the form waves
- Electromagnetic waves - periodic oscillations (cycles) of the electric and magnetic fields in space

Quantum Theory and Atomic Structure

- Nuclear atom - small, heavy, positive nucleus surrounded by a negative electron cloud
- Electronic structure - arrangement of the electrons around the nucleus
- Classical mechanics - fails in describing the electronic motion
- Quantum mechanics - designed to describe the motion of microscopic particles
- Wavelength (λ) - distance between two adjacent minima or maxima of the wave
- Frequency (v) - number of oscillations of the electric (or magnetic) field per second - units - hertz (Hz) $\rightarrow \mathbf{1} \mathbf{H z}=\mathbf{1} \mathbf{s}^{\mathbf{- 1}}$
- Amplitude - strength of the oscillation (related to the intensity of the radiation)
- Speed of light (c) - rate of travel of all types of electromagnetic radiation $\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

$$
\lambda \nu=c \quad \uparrow \lambda \rightarrow \downarrow_{V}
$$

- Electromagnetic spectrum - classification of light based on the values of λ and v

Example:

What is the wavelength of light with frequency $\mathbf{9 8 . 9} \mathbf{~ M H z}$.
$\mathbf{9 8 . 9} \mathbf{M H z}=\mathbf{9 8 . 9 \times 1 0 ^ { 6 }} \mathbf{H z}=98.9 \times 10^{6} \mathbf{s}^{-1}$

$$
\lambda=\frac{c}{v}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{98.9 \times 10^{6} \mathrm{~s}^{-1}}=3.03 \mathrm{~m}
$$

The particle nature of light

- Blackbody radiation - light emitted from solid objects heated to incandescence
- The energy profile of the emitted light could not be explained by the classical mechanics which assumes that the energy of an object can be continuously changed
- Plank (1900) explained the energy profiles by assuming that the energy of an object can be changed only in discrete amounts (quanta) \rightarrow quantization of energy

$$
\Delta E=n(h v)
$$

\boldsymbol{h} - Planck's constant $\quad \boldsymbol{h}=\mathbf{6 . 6 2 6} \times \mathbf{1 0}^{-34} \mathrm{~J} \cdot \mathrm{~s}$
v - frequency of the emitted light
\boldsymbol{n} - quantum number (positive integer - $1,2,3, \ldots$)
$h v$ - the energy of one quantum

- Dual nature of light - light has both wave and particle like properties
- wave (refraction, interference, diffraction)
- particle (photoelectric effect)

Example:

Calculate the energy of a photon of light with wavelength $\mathbf{5 1 4} \mathbf{~ n m}$.
$E_{p h}=h \frac{c}{\lambda}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{514 \times 10^{-9} \mathrm{~m}}=3.87 \times 10^{-19} \mathrm{~J}$

- Explanation (Einstein, 1905) - the ejection of \mathbf{e}^{-}is caused by particles (photons) with energy proportional to the frequency of the radiation \Rightarrow Only photons with enough energy and therefore high enough frequency can eject electrons
\Rightarrow Ejection results from an encounter of an \mathbf{e}^{-}with a single photon (not several photons), so no time delay is observed
- Energy of the photon $\left(\boldsymbol{E}_{\boldsymbol{p h}}\right)$:

$$
E_{p h}=h v \quad v=c / \lambda \quad E_{p h}=h c / \lambda
$$

\Rightarrow The photon is the electromagnetic quantum - the smallest amount of energy atoms can emit or absorb

7.2 Atomic Spectra

- Spectroscopy - studies the interaction of light with matter (emission, absorption, scattering, ...)
- Spectrometer - instrument that separates the different colors of light and records their intensities
- Spectrum - intensity of light as a function of its color (wavelength or frequency)
- Atomic emission spectrum - the spectrum emitted by the atoms of an element when they are excited by heating to high temperatures (very characteristic for each element; used for identification of elements)

- Lyman series (UV) $-\boldsymbol{n}_{\boldsymbol{I}}=\mathbf{1}$ and $\boldsymbol{n}_{\mathbf{2}}=\mathbf{2 , 3}, \mathbf{4}, \ldots$
- Balmer series (VIS) $-\boldsymbol{n}_{\boldsymbol{1}}=\mathbf{2}$ and $\boldsymbol{n}_{2}=\mathbf{3 , 4 , 5 , \ldots}$
- Paschen series (IR) $-\boldsymbol{n}_{\boldsymbol{1}}=\mathbf{3}$ and $\boldsymbol{n}_{\mathbf{2}}=\mathbf{4 , 5 , 6} \ldots$
- Atomic emission spectra are line spectra consist of discrete frequencies (lines)
- Can't be explained by classical physics
- The Rydberg equation - fits the observed lines in the hydrogen atomic emission spectrum

$$
\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$\boldsymbol{n}_{\boldsymbol{1}}, \boldsymbol{n}_{\mathbf{2}}$ - positive integers ($1,2,3, \ldots$) and $\boldsymbol{n}_{\boldsymbol{1}}<\boldsymbol{n}_{2}$
\boldsymbol{R} - the Rydberg constant $\left(1.096776 \times 10^{7} \mathrm{~m}^{-1}\right)$

