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The Bohr model of the H atom (1913)
• Explains the hydrogen atomic emission 

spectrum by using the idea of quantization
• Postulates:

– The electron travels around the nucleus in 
circular orbits without loss of energy

– The angular momentum of the electron is 
quantized → only certain orbits are allowed

• Consequences:
– The energy of the H atom is quantized → only 

certain discrete energy levels (stationary states) 
are allowed

– Each circular orbit corresponds to one E-level

• Consequences (cont.):
– A transition between two energy states generates 

a photon with energy equal to the difference 
between the two levels (∆E)

Eph = Estate 2 – Estate 1 = hν ⇒ ∆E = hν
– A photon with a specific (discrete) frequency is 

emitted for each transition from a higher to a 
lower E-level  

⇒Atomic emission spectra consist of discrete lines
– Each orbit is labeled with a number, n, starting 

from the orbit closest to the nucleus (n = 1, 2, …)
– The same number is used to label the energy 

levels → n is the quantum number

B is a constant (B = 2.18×10-18 J)
Z is the nuclear charge (For H: Z = 1 → En = -B/n2)

• Ground state – the lowest energy state (n = 1)
E1 = -B/12 = -B = – 2.18×10-18 J

• Excited states – higher energy levels (n > 1)
– The energy increases with increasing n
– The highest possible energy is for n = ∞ (the 

electron is completely separated from the nucleus)
E∞ = -B/∞2 = 0 
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• Energy states of the H atom
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• A transition between two E-levels with 
quantum numbers n1 and n2 will produce a 
photon with energy equal to the E-difference 
between the levels, ∆E:
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• Ionization energy (I) of the H atom – the 
energy needed to completely remove the 
electron from a H atom in its ground state 
(can be viewed as the energy change from E1
to E∞)
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• Limitations of the Bohr Model
– Applicable only to H-like atoms and ions (having 

a single electron) in the absence of strong electric 
or magnetic fields (H, He+, Li2+, …)

7.3 The Wave-Particle Duality of 
Matter and Energy 
• Mass-energy equivalency (Einstein)

E = mc2

• For a photon with energy E = hν = hc/λ:
E = mc2 = hc/λ ⇒ mc = h/λ ⇒ λ = h/mc
⇒ λ = h/p p – photon momentum
– The equation shows that the wave-like photons 

have particle-like mass and momentum
• Experimental evidence (Compton, 1923)

• De Broglie’s hypothesis (1924) – all matter 
has wave-like properties (just as waves have 
particle-like properties)
– For a particle with mass, m, and velocity, u, the 

wavelength is:
λ = h/mu

– De Broglie’s equation is equivalent to that for a 
photon (λ = h/mc)

– De Broglie’s equation combines particle 
properties (m, u) with wave properties (λ)

⇒ Matter and energy exhibit wave-particle duality
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• Example: Calculate the wavelengths of an 
electron (m = 9.109×10-31 kg) with velocity 
2.2×106 m/s and a bullet (m = 5.0 g) traveling 
at 700. m/s. 
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• Experimental evidence (Davisson and 
Germer, 1927) 
– Diffraction of electrons by crystal surfaces 
– Diffraction patterns are consistent with the 

wavelength predicted by de Broglie’s relation 
• The electron can be treated as a wave with a 

very short wavelength (similar to the 
wavelength of x-rays) 

• The electron confined in the H atom can be 
treated as a standing wave having discrete 
frequencies (energies) like a guitar string

• Heisenberg’s uncertainty principle (1927) –
the exact position and momentum (velocity) 
of a particle can not be known simultaneously

∆x⋅∆p ≥ h/4π
∆x and ∆p = m∆u – uncertainty in position 
and momentum, respectively
– A consequence of the wave-particle duality of 

matter
– The exact location of very small particles is not 

well known due to their wave-like properties
– The probability to find a particle at a particular 

location depends on the amplitude (intensity) of 
the wave at this location  


