The Bohr model of the H atom (1913)

- Explains the hydrogen atomic emission spectrum by using the idea of quantization
- Postulates:
 - The electron travels around the nucleus in circular orbits without loss of energy
 - The angular momentum of the electron is quantized \rightarrow only certain orbits are allowed
- Consequences:
 - The energy of the H atom is quantized → only certain discrete energy levels (stationary states) are allowed
 - Each circular orbit corresponds to one *E*-level

- Consequences (cont.):
 - A transition between two energy states generates a **photon** with energy equal to the difference between the two levels (ΔE)
 - $E_{ph} = E_{state 2} E_{state 1} = hv \implies \Delta E = hv$
 - A photon with a specific (discrete) frequency is emitted for each transition from a higher to a lower *E*-level
- ⇒Atomic emission spectra consist of discrete lines
 - Each orbit is labeled with a number, n, starting from the orbit closest to the nucleus (n = 1, 2, ...)
 - The same number is used to label the energy levels $\rightarrow n$ is the **quantum number**
- Energy states of the H atom $E_n = -B\left(\frac{Z^2}{n^2}\right) \qquad n = 1, 2, 3, ..., \infty$ B is a constant (B = 2.18×10⁻¹⁸ J) Z is the nuclear charge (For H: Z = 1 $\rightarrow E_n = -B/n^2$) • Ground state – the lowest energy state (n = 1) $E_1 = -B/1^2 = -B = -2.18 \times 10^{-18}$ J • Excited states – higher energy levels (n > 1) – The energy increases with increasing n – The highest possible energy is for $n = \infty$ (the electron is completely separated from the nucleus) $E_{\infty} = -B/\infty^2 = 0$

• A transition between two *E*-levels with quantum numbers n_1 and n_2 will produce a photon with energy equal to the *E*-difference between the levels, ΔE :

$$\Delta E = E_{n_2} - E_{n_1} = \left(-\frac{B}{n_2^2}\right) - \left(-\frac{B}{n_1^2}\right) = B\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$
$$\Delta E = E_{ph} = hv = \frac{hc}{\lambda} = B\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$
$$\Rightarrow \frac{1}{\lambda} = \frac{B}{hc}\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \leftarrow \text{Rydberg eq.}\left(\frac{B}{hc} = R\right)$$

7.3 The Wave-Particle Duality of Matter and Energy

- Mass-energy equivalency (Einstein) $E = mc^2$
- For a photon with energy $E = hv = hc/\lambda$:
- $E = mc^2 = hc/\lambda \implies mc = h/\lambda \implies \lambda = h/mc$

 $\Rightarrow \lambda = h/p$ p - photon momentum

- The equation shows that the wave-like photons have particle-like mass and momentum

• Experimental evidence (Compton, 1923)

Ionization energy (I) of the H atom – the energy needed to completely remove the electron from a H atom in its ground state (can be viewed as the energy change from E₁ to E_∞)

$$\Delta E = E_{\infty} - E_1 = \left(-\frac{B}{\infty^2}\right) - \left(-\frac{B}{1^2}\right) = 0 - (-B) = B$$

 \Rightarrow $I = B = 2.18 \times 10^{-18}$ J/atom

• Limitations of the Bohr Model

- Applicable only to H-like atoms and ions (having a single electron) in the absence of strong electric or magnetic fields (H, He⁺, Li²⁺, ...)
- **De Broglie's hypothesis** (1924) all matter has wave-like properties (just as waves have particle-like properties)
 - For a particle with mass, *m*, and velocity, *u*, the wavelength is:

$\lambda = h/mu$

- De Broglie's equation is equivalent to that for a photon ($\lambda = h/mc$)
- De Broglie's equation combines particle properties (m, u) with wave properties (λ)
- \Rightarrow Matter and energy exhibit wave-particle duality

• Example: Calculate the wavelengths of an electron ($m = 9.109 \times 10^{-31}$ kg) with velocity 2.2×10^6 m/s and a bullet (m = 5.0 g) traveling at 700. m/s.

 $\lambda(e^{-}) = \frac{h}{mu} = \frac{6.626 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}}{9.109 \times 10^{-31} \,\mathrm{kg} \times 2.2 \times 10^{6} \,\mathrm{m/s}}$ $= 3.3 \times 10^{-10} \,\mathrm{m} = 0.33 \,\mathrm{nm} \to \mathrm{comparable to atomic sizes}$ $\lambda(bul) = \frac{h}{mu} = \frac{6.626 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}}{5.0 \times 10^{-3} \,\mathrm{kg} \times 700. \,\mathrm{m/s}}$ $= 1.9 \times 10^{-34} \,\mathrm{m} \to \mathrm{very \ short, \ undetectable}$

n=1 l=1 $l=1(\frac{\lambda}{2})$ n=5 n=2 $l=2(\frac{\lambda}{2})$ $l=3(\frac{\lambda}{2})$ $l=3(\frac{\lambda}{2})$ $l=3(\frac{\lambda}{2})$ $l=3(\frac{\lambda}{2})$ $l=3(\frac{\lambda}{2})$

- Experimental evidence (Davisson and Germer, 1927)
 - $-\operatorname{Diffraction}$ of electrons by crystal surfaces
 - Diffraction patterns are consistent with the wavelength predicted by de Broglie's relation
- The electron can be treated as a wave with a very short wavelength (similar to the wavelength of x-rays)
- The electron confined in the **H** atom can be treated as a **standing wave** having discrete frequencies (energies) like a guitar string

• Heisenberg's uncertainty principle (1927) – the exact position and momentum (velocity) of a particle can not be known simultaneously

$\Delta x \cdot \Delta p \geq h/4\pi$

- Δx and $\Delta p = m \Delta u$ uncertainty in position and momentum, respectively
- A consequence of the wave-particle duality of matter
- The exact location of very small particles is not well known due to their wave-like properties
- The probability to find a particle at a particular location depends on the amplitude (intensity) of the wave at this location