7.4 The Quantum-Mechanical Model of the Atom

- Bohr's model of the **H** atom
 - Assumes the quantization without explanation
 - Does not take into account Heisenberg's uncertainty principle
 - Limited success only for the ${\bf H}$ atom
- Schrödinger's model
 - Based on the wave-particle duality of the electron
 - The quantization is logically derived from the wave properties of the electron
 - Formalism applicable to other atoms
- The solutions for the wavefunction, Ψ , in the **H** atom are called **atomic orbitals**
- Born's interpretation of the wavefunction the probability to find the electron at a certain point (x, y, z) in space is proportional to the square of the wave function, Ψ², in this point
- Electron density diagrams three-dimensional plots of the probability to find the electron (Ψ^2) around the nucleus \rightarrow electron clouds
- Contour diagrams surround the densest regions of the electron cloud – usually 90% of the total probability → 90% probability contour

Atomic Orbitals

• The Schrödinger equation

- The electron wave is described by a wavefunction (Ψ) a mathematical function of the wave's amplitude at different points (x, y, z) in space
- The equation provides solutions for the possible wavefunctions and energies of the electron
- Only certain solutions for the energy are allowed (waves fit in the atom only for certain energy values)

$$-\frac{\hbar}{2m}\left(\frac{\partial^2\Psi}{\partial x^2}+\frac{\partial^2\Psi}{\partial y^2}+\frac{\partial^2\Psi}{\partial z^2}\right)+V\Psi = E\Psi$$

Quantum Numbers

• Solutions of the Schrödinger equation for the wavefunction of the electron in the **H** atom:

Atomic orbitals $\rightarrow \Psi n, l, m_l$

- Depend on three quantum numbers used as labels of each solution (n, l, m_l)
- Principal quantum number (n) specifies the energy (E_n) of the electron occupying the orbital and the average distance (r) of the electron from the nucleus (size of the orbital)

 $\uparrow n \Rightarrow \uparrow E_n \qquad \uparrow n \Rightarrow \uparrow r$

All orbitals with the same value of *n* form a principal level (shell)
All orbitals with the same value of *l* form a sublevel (subshell) within a principal shell

Subshells are labeled with the value of *n* followed by a letter corresponding to the value of *l l*=0 → s, *l*=1 → p, *l*=2 → d, *l*=3 → f, *l*=4 → g, ...
Each value of *m_l* specifies an orbital in a subshell

Example: Label the subshell containing the orbital Ψ_{3,2,-1} *n* = 3 *l*=2 → d ⇒ 3*d*-subshell

- Angular momentum quantum number (*l*) specifies the shape of the orbital
- Magnetic quantum number (m_l) specifies the orientation of the orbital
- A set of three quantum numbers (*n*, *l*, *m_l*) unambiguously specifies an orbital (Ψ*n*,*l*,*m_l*)
- Possible values of the quantum numbers: $n = 1, 2, 3, \infty$

<i>n</i> 1, 2, 0,,		
l = 0, 1, 2,, n-1	(restricted by <i>n</i>)	
$m_l = -l, \ldots, -1, 0, 1, \ldots$, <i>l</i>	(restricted by <i>l</i>)
$\Psi_{3.21}$ (possible)	Ψ _{2.2.2}	$_2$ and $\Psi_{3,0,1}$ (impossible)

Example: What is the # of orbitals in the 4f subshell? Give the m_1 values of these orbitals.

$$4f \rightarrow n = 4, l = 3 \rightarrow 2l + 1 = 7$$
 orbitals

 $l=3 \rightarrow m_l=-3, -2, -1, 0, +1, +2, +3$

• Solutions of the Schrödinger equation for the energy of the electron in the **H** atom:

$$E_n = -\frac{B}{n^2}$$
 $n = 1, 2, 3, ...$

 \Rightarrow The energy levels of **H** depend only on the principal quantum number, *n*

- Same as Bohr's energy levels ($B = 2.18 \times 10^{-18} \text{ J}$)
- $-E_n$ increases with increasing n

Shapes of Orbitals

- s-Orbitals $\rightarrow l = 0$
 - Spherical shape
 - The electron density is highest at the nucleus (density decreases away from the nucleus)
 - The radial distribution has a maximum slightly away from the nucleus
 - The orbital size increases with increasing the energy of the orbital (1s < 2s < 3s ...)
 - Higher energy orbitals have several **maxima** in the radial distribution and one or more spherical **nodes** (regions with zero probability to find the electron) $2s \rightarrow 2$ max, 1 node; $3s \rightarrow 3$ max, 2 nodes ...

- *p*-Orbitals $\rightarrow l = 1$
 - Dumbbell-shaped (two-lobed)
 - Positive sign of Ψ in one of the lobes of the orbital and negative in the other lobe
 - Nodal plane going through the nucleus (surface with zero probability to find the electron)
 - Three possible orientations in space:

 $m_l = -1, 0, +1 \rightarrow p_x, p_y, p_z$

- -p-orbitals are possible only in the 2nd and higher principal shells
- The orbital size increases with increasing the energy of the orbital $(2p < 3p < 4p \dots)$

- *d*-Orbitals $\rightarrow l = 2$
 - Cloverleaf-shaped (four-lobed, except d_{z^2})
 - Opposite signs of Ψ in the lobes laying beside each other
 - Two perpendicular nodal planes going through the nucleus
 - Five possible orientations in space:

 $m_1 = -2, -1, 0, 1, 2 \rightarrow d_{z^2}, d_{x^2-y^2}, d_{xy}, d_{zx}, d_{yz}$ - *d*-orbitals are possible only in the 3rd and higher principal shells

The orbital size increases with increasing the energy of the orbital (3d < 4d < 5d ...)

• Energy levels of the H atom

- Electronic energy depends only on the principal quantum number (n) - all subshells in a given shell have the same energy

