7.4 The Quantum-Mechanical Model of the Atom

- Bohr's model of the \mathbf{H} atom
- Assumes the quantization without explanation
- Does not take into account Heisenberg's uncertainty principle
- Limited success only for the \mathbf{H} atom
- Schrödinger's model
- Based on the wave-particle duality of the electron
- The quantization is logically derived from the wave properties of the electron
- Formalism applicable to other atoms
- The solutions for the wavefunction, Ψ, in the \mathbf{H} atom are called atomic orbitals
- Born's interpretation of the wavefunction - the probability to find the electron at a certain point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) in space is proportional to the square of the wave function, Ψ^{2}, in this point
- Electron density diagrams - three-dimensional plots of the probability to find the electron ($\Psi^{\mathbf{2}}$) around the nucleus \rightarrow electron clouds
- Contour diagrams - surround the densest regions of the electron cloud - usually 90% of the total probability $\rightarrow 90 \%$ probability contour

Atomic Orbitals

- The Schrödinger equation
- The electron wave is described by a wavefunction (Ψ) - a mathematical function of the wave's amplitude at different points (x, y, z) in space
- The equation provides solutions for the possible wavefunctions and energies of the electron
- Only certain solutions for the energy are allowed (waves fit in the atom only for certain energy values)

$$
-\frac{\hbar}{2 m}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right)+V \Psi=E \Psi
$$

Quantum Numbers

- Solutions of the Schrödinger equation for the wavefunction of the electron in the \mathbf{H} atom:

$$
\text { Atomic orbitals } \rightarrow \Psi n, l, m_{l}
$$

- Depend on three quantum numbers used as labels of each solution $\left(\boldsymbol{n}, \boldsymbol{l}, \boldsymbol{m}_{\boldsymbol{l}}\right)$
- Principal quantum number (\boldsymbol{n}) - specifies the energy $\left(\boldsymbol{E}_{\boldsymbol{n}}\right)$ of the electron occupying the orbital and the average distance (\boldsymbol{r}) of the electron from the nucleus (size of the orbital)

$$
\uparrow n \Rightarrow \uparrow E_{n} \quad \uparrow n \Rightarrow \uparrow r
$$

- All orbitals with the same value of \boldsymbol{n} form a principal level (shell)
- All orbitals with the same value of \boldsymbol{l} form a sublevel (subshell) within a principal shell
- Subshells are labeled with the value of \boldsymbol{n} followed by a letter corresponding to the value of l $l=\mathbf{0} \rightarrow \mathrm{s}, l=\mathbf{1} \rightarrow \mathrm{p}, l=\mathbf{2} \rightarrow \mathrm{d}, l=\mathbf{3} \rightarrow \mathrm{f}, l=\mathbf{4} \rightarrow \mathrm{g}, \ldots$ - Each value of \boldsymbol{m}_{l} specifies an orbital in a subshell

Example: Label the subshell containing the orbital $\Psi_{3,2,-1}$
$n=3 \quad l=2 \rightarrow \mathbf{d} \Rightarrow 3 d$-subshell

- Angular momentum quantum number (l) specifies the shape of the orbital
- Magnetic quantum number ($\boldsymbol{m}_{\boldsymbol{l}}$) - specifies the orientation of the orbital
- A set of three quantum numbers ($\boldsymbol{n}, \boldsymbol{l}, \boldsymbol{m}_{\boldsymbol{l}}$) unambiguously specifies an orbital ($\Psi_{n, l, m_{l}}$)
- Possible values of the quantum numbers:
$n=1,2,3, \ldots, \infty$
$\boldsymbol{l}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}-\mathbf{1} \quad($ restricted by $\boldsymbol{n})$
$m_{l}=-l, \ldots,-\mathbf{1}, \mathbf{0}, 1, \ldots, l \quad$ (restricted by \boldsymbol{l})
$\Psi_{3,2,-1}$ (possible) $\quad \Psi_{2,2,2}$ and $\Psi_{3,0,1}$ (impossible)

Example: What is the \# of orbitals in the $4 f$ subshell? Give the $\boldsymbol{m}_{\boldsymbol{l}}$ values of these orbitals.
$4 f \rightarrow n=4, l=3 \quad \rightarrow \quad 2 l+1=7$ orbitals
$l=3 \rightarrow m_{l}=-3,-2,-1,0,+1,+2,+3$

- Solutions of the Schrödinger equation for the energy of the electron in the \mathbf{H} atom:

$$
E_{n}=-\frac{B}{n^{2}} \quad n=1,2,3, \ldots
$$

\Rightarrow The energy levels of \mathbf{H} depend only on the principal quantum number, \boldsymbol{n}

- Same as Bohr's energy levels ($\boldsymbol{B}=\mathbf{2 . 1 8} \times \mathbf{1 0}^{-\mathbf{1 8}} \mathbf{J}$)
$-\boldsymbol{E}_{n}$ increases with increasing \boldsymbol{n}

Shapes of Orbitals

- s-Orbitals $\rightarrow \boldsymbol{l}=0$
- Spherical shape
- The electron density is highest at the nucleus (density decreases away from the nucleus)
- The radial distribution has a maximum slightly away from the nucleus
- The orbital size increases with increasing the energy of the orbital ($\mathbf{1 s}<\mathbf{2 s}<\mathbf{3 s} \ldots$)
- Higher energy orbitals have several maxima in the radial distribution and one or more spherical nodes (regions with zero probability to find the electron) $2 s \rightarrow \mathbf{2}$ max, 1 node; $\mathbf{3 s} \rightarrow \mathbf{3}$ max, 2 nodes ..

- \boldsymbol{p}-Orbitals $\rightarrow \boldsymbol{l}=1$

- Dumbbell-shaped (two-lobed)
- Positive sign of Ψ in one of the lobes of the orbital and negative in the other lobe
- Nodal plane going through the nucleus (surface with zero probability to find the electron)
- Three possible orientations in space:

$$
\boldsymbol{m}_{l}=-1,0,+1 \rightarrow \boldsymbol{p}_{x}, \boldsymbol{p}_{y}, \boldsymbol{p}_{z}
$$

- \boldsymbol{p}-orbitals are possible only in the $2^{\text {nd }}$ and higher principal shells
- The orbital size increases with increasing the energy of the orbital $(2 p<3 p<4 p \ldots)$

- d-Orbitals $\rightarrow l=2$
- Cloverleaf-shaped (four-lobed, except $d_{z^{2}}$)
- Opposite signs of Ψ in the lobes laying beside each other
- Two perpendicular nodal planes going through the nucleus
- Five possible orientations in space:

$$
m_{l}=-2,-1,0,1,2 \rightarrow d_{\mathrm{z}^{2}}, d_{\mathrm{x}^{2}-\mathrm{y}^{2}}, d_{\mathrm{xy}}, d_{\mathrm{zx}}, d_{\mathrm{yz}}
$$

$-\boldsymbol{d}$-orbitals are possible only in the $3^{\text {rd }}$ and higher principal shells

- The orbital size increases with increasing the energy of the orbital ($\mathbf{3} \boldsymbol{d}<\mathbf{4 d}<\mathbf{5 d} \ldots$..)

- Energy levels of the \mathbf{H} atom

- Electronic energy depends only on the principal quantum number (\boldsymbol{n}) - all subshells in a given shell have the same energy

