

## 8.1 Many-Electron Atoms

- Only approximate solutions of the Schrödinger equation are available
- Electron-electron interactions are important
- The same tree quantum numbers (*n*, *l* and *m<sub>l</sub>*) are used to describe the solutions (the orbitals are hydrogen-like)

## The Electron Spin

- The electron can be viewed as a ball of spinning charge has a magnetic moment
- The magnetic moment is quantized only two orientations of the spin are allowed in a magnetic field

# Electron Configuration and Chemical Periodicity

# The Periodic Table

- **Periodic law** (Mendeleev, Meyer, 1870) periodic reoccurrence of similar physical and chemical properties of the elements arranged by increasing **atomic mass** 
  - Periodic table included the 65 known elements
  - Mendeleev left blank spaces for the undiscovered elements and was able to predict their properties
  - The true basis of periodicity is the atomic number not the atomic mass (Mosley, 1913)



- $\Rightarrow Spin quantum number (m_s) two possible values of <math>m_s$  (+1/2 and -1/2)
- Each electron in an atom is described by four quantum numbers n, l, m<sub>l</sub>, m<sub>s</sub>

- The Pauli exclusion principle no two electrons in an atom can have the same set of four quantum numbers
  - $\Rightarrow$ Each orbital can hold no more than two electrons and they must have opposite spins (paired spins,  $\uparrow\downarrow$ )

## **Orbital Energies**

• Orbital energies depend on both *n* and *l* 

 $n\uparrow \rightarrow E\uparrow$   $l\uparrow \rightarrow E\uparrow$  $\Rightarrow$  Orbitals in different subshells of a given principal shell have different energies

- Evidence many-electron atoms have more complex atomic spectra (splitting of *E*-levels)
- Electron shielding electrons shield each other from the nuclear charge
  - Inner electrons shield outer electrons more effectively than electrons in the same orbital or subshell
- Effective nuclear charge  $(Z_{eff})$  smaller than the actual nuclear charge (Z) due to electron shielding
- **Penetration** electrons on orbitals in different subshells of a given shell are shielded to a different extent depending on their penetration (closeness) to the nucleus

More penetration  $\rightarrow$  less shielding  $\rightarrow$  higher  $Z_{eff}$ 

- Electrons are attracted by the nucleus and repelled by each other
  - The effect of nuclear charge (Z) higher Z lowers the orbital energy
  - The effect of electron repulsion an additional
    e<sup>-</sup> in the same orbital raises the orbital energy





