8.2 Electron Configurations

- Building-up (aufbau) principle as new electrons are added to the atom, they are placed in the lowest energy available orbital (minimization of the total energy of the atom)
 - Electron configuration a list of the occupied subshells and the number of electrons on them
 - **Orbital diagrams** each orbital is represented by a box; the electrons are shown as up or down arrows depending on the spin quantum number (+1/2 or -1/2)

- Degenerate orbitals orbitals with equal energies
 All orbitals in a subshell are degenerate (same *n* and *l*) → the three 2*p*-orbitals are degenerate
- Hund's rule in filling degenerate orbitals, electrons enter the empty orbitals having identical spins before pairing in one of them (minimization of the repulsion between the electrons)

- Outer electrons electrons in the outermost occupied principal shell
- Inner (core) electrons inner shells
- Condensed e⁻ configurations inner shells (or part of them) can be abbreviated with the symbol of the previous noble gas in brackets $1s^2 \rightarrow$ abbreviated as [He]

Ne (Z=10)

 $[He]2s^22p^5$

F (Z=9)

 $[\text{He}]2s^22p^6$

[Ne]

Iable 8.3 Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 3						
Atomic Number/ Element	Partial Orbital Diagram (3 <i>s</i> and 3 <i>p</i> Sublevels Only)	Full Electron Configuration	Condensed Electron Configuration			
11/Na	3s 3p 1	$[1s^22s^22p^6]$ 3s ¹	[Ne] 3 <i>s</i> ¹			
12/Mg		$[1s^22s^22p^6]$ 3s ²	[Ne] $3s^2$			
13/A1	↑↓	$[1s^22s^22p^6] 3s^23p^1$	[Ne] $3s^2 3p^1$			
14/Si		$[1s^22s^22p^6] 3s^23p^2$	[Ne] $3s^2 3p^2$			
15/P	$\uparrow \downarrow \qquad \uparrow \uparrow \uparrow$	$[1s^22s^22p^6] 3s^23p^3$	[Ne] $3s^2 3p^3$			
16/S		$[1s^22s^22p^6] 3s^23p^4$	[Ne] $3s^2 3p^4$			
17/Cl		$[1s^22s^22p^6] 3s^23p^5$	[Ne] $3s^2 3p^5$			
18/Ar	$\uparrow\downarrow \qquad \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow$	$[1s^22s^22p^6] 3s^23p^6$	[Ne] $3s^2 3p^6$			

Atomic Number	Partial Orbital Diagram Element (4 <i>s</i> , 3 <i>d</i> , and 4 <i>p</i> Sublevels Only)			Condensed El Configuration	
19	K	4s	3 <i>d</i>	4 <i>p</i>	[Ar] 4 <i>s</i> ¹
20	Ca	↑↓			$[Ar] \frac{4s^2}{4s^2}$
21	Sc	↑↓	1		$[\mathrm{Ar}] 4s^2 3d^1$
22	Ti	↑↓			$[\mathrm{Ar}] 4s^2 3d^2$
23	v	↑↓	$\uparrow \uparrow \uparrow$		[Ar] $4s^2 3d^3$
• Exce – Ha Cr	eptions alf-fille $ \rightarrow [A]$	5 to t d sul r]4s ¹	he building-u bshells have ex 3 <i>d</i> ⁵ instead of [p princ ceptiona Ar]4s ² 3	iple al stability d ⁴

Atomic Number	Element	Partial Orbital Diagram (4s, 3d, and 4p Sublevels Only)			Condensed El. Configuration
		4 <i>s</i>	3 <i>d</i>	4 <i>p</i>	
24	Cr	\uparrow	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		$[Ar] 4s^1 3d^5$
25	Mn	$\uparrow \downarrow$	$\uparrow \uparrow \uparrow \uparrow \uparrow$		$[Ar] \frac{4s^2 3d^5}{4s^2 3d^5}$
26	Fe	$\uparrow\downarrow$			[Ar] $4s^2 3d^6$
27	Co	$\uparrow \downarrow$			[Ar] $4s^2 3d^7$
28	Ni	$\uparrow \downarrow$			$[Ar] 4s^2 3d^8$
29	Cu	\uparrow			$[Ar] 4s^{1}3d^{10}$
30	Zn	$\uparrow \downarrow$	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$		$[Ar] \frac{4s^2 3d^{10}}{3}$
– Co sta	omplet ability	ely f	ïlled subshells h	ave exe	ceptional

Electronic Structure and the Periodic Table

- The table is divided into *s*, *p*, *d*, and *f* blocks named by the last occupied subshell being filled
- Electron configurations can be deduced from the positions of elements in the periodic table
 - Outer shell principal quantum numbers equal period numbers (F $\rightarrow 2^{nd}$ period, *n*=2)
 - All elements in a period have the same noble-gas core configurations ([He], [Ne], [Ar], ...)

Atomic Number	Element	Partial Orbital Diagram (4 <i>s</i> , 3 <i>d</i> , and 4 <i>p</i> Sublevels Only)			Condensed El. Configuration
		4 <i>s</i>	3 <i>d</i>	4 <i>p</i>	
31	Ga	$\uparrow \downarrow$	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	1	[Ar] $4s^2 3d^{10} 4p^1$
32	Ge	↑↓		\uparrow \uparrow	[Ar] $4s^2 3d^{10} 4p^2$
33	As	$\uparrow\downarrow$	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	$\uparrow \uparrow \uparrow$	$[Ar] 4s^2 3d^{10} 4p^3$
34	Se	↑↓	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$		[Ar] $4s^2 3d^{10} 4p^4$
35	Br	$\uparrow\downarrow$	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$		[Ar] $4s^2 3d^{10} 4p^5$
36	Kr	↑↓			[Ar] $4s^2 3d^{10} 4p^6$
– Similarly, the building-up principle is used to					
obtain the electron configurations for periods 5, 6					
and 7 (similar and even more drastic exceptions					
are observed)					

- The filling order of the orbitals can be obtained from the periodic table:
 - The *ns*, *np*, *(n-1)d* and *(n-2)f* orbitals are filled in the *nth* period from left to right

- The filling order is ns < (n-2)f < (n-1)d < np

Examples:

Write the full and condensed electron configurations of galium, Ga. (H, He) $1s^2 \rightarrow$ (Li, Be) $2s^2 \rightarrow$ (B-Ne) $2p^6 \rightarrow$ (Na, Mg) $3s^2 \rightarrow$ (Al-Ar) $3p^6 \rightarrow$ (K, Ca) $4s^2 \rightarrow$ (Sc-Zn) $3d^{10} \rightarrow$ (Ga) $4p^1 \Rightarrow$ Ga $\rightarrow 1s^22s^22p^63s^23p^64s^23d^{10}4p^1 \Rightarrow$ Ga $\rightarrow [Ar]4s^23d^{10}4p^1$ Write the electron configuration of osmium, Os.

Os is in the 6th period \rightarrow outer shell *n*=6 Previous noble gas is Xe \rightarrow noble-gas core is [Xe] After Xe \rightarrow 2 *n*s, 14 (*n*-2)f, and 6 (*n*-1)d elements

 \Rightarrow [Xe]6s²4f¹⁴5d⁶

Example:

Write the electron configuration and the valence shell orbital diagram of lead, Pb. outer shell n=6 noble-gas core [Xe] After Xe $\rightarrow 2$ 6s, 14 4f, 10 5d, and 2 6p elements \Rightarrow [Xe] 6s²4f¹⁴5d¹⁰6p² \Rightarrow Valence shell configuration $\rightarrow 6s^{2}6p^{2}$ \Rightarrow Valence shell orbital diagram: $\uparrow \downarrow \uparrow \uparrow \uparrow f_{6s} = 6p$ Valence electrons – the electrons in the outermost occupied principal shell and in partially filled subshells of lower principal shells (important in chemical reactions)
The number of valence electrons equals the "new" group # or (group # - 10 for *p*-elements)
All elements in a group have analogous valence shell electron configurations (F → [He]2s²2p⁵; Cl → [Ne]3s²3p⁵; all halogens → ns²np⁵)
s and p elements → group 1 ns¹, group 2 ns², group 13 ns²np¹, ..., group 18 ns²np⁶
d elements → group 3 (n-1)d¹ns², ..., group 12 (n-1)d¹⁰ns²