- Derived units (derived from the base units)
- Volume $(\boldsymbol{V}) \rightarrow 1 \mathrm{~m}^{3}=(1 \mathrm{~m}) \times(1 \mathrm{~m}) \times(1 \mathrm{~m})$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}=(1 \mathrm{~cm}) \times(1 \mathrm{~cm}) \times(1 \mathrm{~cm})=$
$\left(10^{-2} \mathrm{~m}\right) \times\left(10^{-2} \mathrm{~m}\right) \times\left(10^{-2} \mathrm{~m}\right)=\left(10^{-2} \times 10^{-2} \times 10^{-2}\right) \mathrm{m}^{3}=10^{-6} \mathrm{~m}^{3}$
$1 \mathrm{~L}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3} \quad 1 \mathrm{~mL}=10^{-3} \mathrm{~L}$
- Density $(\boldsymbol{d}) \rightarrow$ mass (m) per unit volume (V)
$\rightarrow(d=m / V)$
unit of $d=(1 \mathrm{~kg}) /\left(1 \mathrm{~m}^{3}\right)=1 \mathrm{~kg} / \mathrm{m}^{3}$
- Velocity (v) \rightarrow distance (l) per unit time (t) $\rightarrow(v=l / t)$
unit of $v=(1 \mathrm{~m}) /(1 \mathrm{~s})=1 \mathrm{~m} / \mathrm{s}$
- Extensive properties - depend on sample size (mass, volume, length, ...)
- Intensive properties - independent of sample size (density, temperature, color, ...)

Example:

What is the density of an alloy in $\mathrm{g} / \mathrm{cm}^{3}$, if 55 g of it displace $\mathbf{9 . 1} \mathbf{~ m L}$ of water? $d=m / V=(55 \mathrm{~g}) /(9.1 \mathrm{~mL})=6.0 \mathrm{~g} / \mathrm{mL}=$ $6.0 \mathrm{~g} / \mathrm{cm}^{3}$

Example:

What is the mass in $\boldsymbol{k g}$ of a $\mathbf{1 5 ~ f t}$ wire made of an alloy with $\boldsymbol{d}=\mathbf{6 . 0} \mathbf{g} / \mathbf{c m}^{\mathbf{3}}$ if the diameter of the wire is $\mathbf{0 . 2 0}$ in?

Plan:

Diameter \rightarrow radius (cm) \rightarrow cross-section area $\left(\mathrm{cm}^{2}\right)$ Length (cm) \times cross-section area \rightarrow volume $\left(\mathrm{cm}^{3}\right)$
Volume \& density \rightarrow mass (g) \rightarrow mass (kg)

15 ft
0.20 in $\uparrow 0$
Radius $\rightarrow r=0.20$ in $/ 2=0.10$ in
$r=0.10 \mathrm{j} n \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{j}} \mathrm{n}\right)=0.254 \mathrm{~cm}$
$A=\pi r^{2}=3.14 \times(0.254 \mathrm{~cm})^{2}=0.203 \mathrm{~cm}^{2}$
$l=15 \mathrm{ft} \times\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}^{\prime}}\right) \times\left(\frac{2.54 \mathrm{~cm}}{1 i n}\right)=457 \mathrm{~cm}$
$V=l \times A=457 \mathrm{~cm} \times 0.203 \mathrm{~cm}^{2}=92.7 \mathrm{~cm}^{3}$
$m=92.7 \mathrm{~cm}^{3} \times\left(\frac{6.0 \mathrm{~g}}{1 \mathrm{~cm}^{3}}\right) \times\left(\frac{1 \mathrm{~kg}}{1000 g}\right)=0.56 \mathrm{~kg}$

- Temperature (T) - a measure of how hot or cold an object is relative to other objects
$-T$ reflects the thermal energy of the object
$-T$ is an intensive property
- Heat - the flow of thermal energy between objects
- Heat flows from objects with higher T to objects with lower T
- Heat is an extensive property
- Heat and temperature are different
- Thermometers
- Used to measure T
- The Celsius scale
$-0^{\circ} \mathrm{C} \rightarrow$ freezing point of water
$-100^{\circ} \mathrm{C} \rightarrow$ boiling point of water
- The Fahrenheit scale
$-0^{\circ} \mathrm{F} \rightarrow$ freezing point of salt/water mixture
$-100^{\circ} \mathrm{F} \rightarrow$ body temperature
- water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$
$\Rightarrow 100$ Celsius degrees $\leftrightarrow 180$ Fahrenheit degrees

$$
\begin{aligned}
& \left(\frac{180^{\circ} \mathrm{F}}{100^{\circ} \mathrm{C}}\right)=\left(\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}\right) \\
& T^{\circ} \mathrm{F}=\left(\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}\right) T^{\circ} \mathrm{C}+32^{\circ} \mathrm{F} \\
& T^{\circ} \mathrm{C}=\left(\frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}\right)\left(T^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)
\end{aligned}
$$

- The Kelvin scale - absolute temperature scale
$-0 \mathrm{~K} \rightarrow$ lowest possible temperature
$-0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
- same size of degree unit as Celsius
\Rightarrow water freezes at 273.15 K and boils at 373.15 K
- $T \mathrm{~K}=T^{\circ} \mathrm{C}+273.15$
- $T^{\circ} \mathrm{C}=T \mathrm{~K}-273.15$

Example:

- Convert $-40^{\circ} \mathrm{F}$ in ${ }^{\circ} \mathrm{C}$ and K .
- $T^{\circ} \mathrm{C}=\left(5^{\circ} \mathrm{C} / 9^{\circ} \mathrm{F}\right) \times\left[-40^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right]=$ $=(5 / 9) \times(-72)^{\circ} \mathrm{C}=-40^{\circ} \mathrm{C}$
- $\boldsymbol{T K}=\mathbf{- 4 0}{ }^{\circ} \mathrm{C}+273.15=233 \mathrm{~K}$

