
8.4 Atomic Structure and Chemical Behavior

Trends in Metallic Behavior

• Related to the trends in the size, *I* and *A*

- Relative tendency to lose or gain electrons
 - The tendency to form cations increases to the left and toward the bottom (*I* decreases)
 - The tendency to form anions increases to the right and toward the top (*A* increases)
- Elemental oxides
 - Metals tend to form ionic oxides that act as bases in water \rightarrow basic oxides (Na₂O, CaO, BaO, ...)
 - Nonmetals tend to form covalent oxides that act as acids in water \rightarrow acidic oxides (CO₂, SO₃, ...)
 - Most metalloids and some metals form amphoteric oxides \rightarrow can act as acids or bases in water (Al₂O₃, GeO₂, ...)

Properties of Monatomic Ions		
 Electron configurations of cations 		
– For <i>s</i> - and <i>p</i> -elements, electrons are lost first from		
the <i>np</i> subshell followed by the <i>ns</i> subshell		

 All valence electrons are lost until a noble gas (or a pseudo-noble gas) configuration is achieved (high stability)

Example: Write the electron configurations of the stable cations of **Sr** and **Ga**.

$Sr \rightarrow [Kr]5s^2$	$\mathrm{Sr}^{2+} \rightarrow [\mathrm{Kr}]$
$Ga \rightarrow [Ar] 4s^2 3d^{10} 4p^1$	$Ga^{3+} \rightarrow [Ar]3d^{10}$
Pseudo-noble gas config	guration \rightarrow [Noble](<i>n</i> -1) d^{10}

- Inert pair effect – the *np*-electrons have higher energy than the *ns*-electrons and are lost first, so the two *ns*-electrons may or may not be lost (for the heavier metals in the *p*-block \rightarrow In, Tl, Sn, Pb, and Bi)

Example: Write the electron configurations of the two common cations of **Pb**.

 $Pb \rightarrow [Xe] \underline{6s^2} 4 f^{14} 5 d^{10} \underline{6p^2}$

 $Pb^{2+} \rightarrow [Xe]_{6}^{6s^{2}4}f^{14}5d^{10} \qquad Pb^{4+} \rightarrow [Xe]_{7}^{4s^{14}5}d^{10}$

Inert pair/

Pseudo-noble gas config. \rightarrow [Noble] $(n-2)f^{14}(n-1)d^{10}$

Magnetic properties of atoms and ions

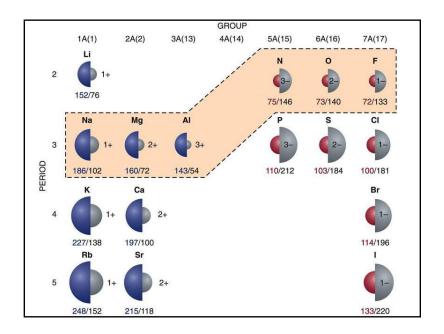
 Species with unpaired electrons are paramagnetic (attracted by magnetic fields)
 Species having all electrons paired are diamagnetic (not attracted by magnetic fields)

 Example: Write the electron configurations of V and V³⁺ and determine which species is more paramagnetic.
 V → [Ar]4s²3d³
 V³⁺ → [Ar]3d²
 ^{4s}
 ^{3d}
 ^{4p}
 ^{4s}
 ^{3d}
 ^{4p}

- For *d*-elements, electrons are lost first from the *ns* subshell followed by the (*n-1*)*d* subshell
- In general, not all valence electrons are lost and more than one cations are possible

Example: Write the electron configuration of Co^{3+} .

 $Co \rightarrow [Ar]4s^23d^7$ $Co^{3+} \rightarrow [Ar]3d^6$


• Electron configurations of **anions**

 Electrons are added until a noble-gas configuration is reached

Example: Write the electron configuration of the **nitride** ion.

 $N \rightarrow [He] 2s^2 2p^3$ $N^{3-} \rightarrow [He] 2s^2 2p^6 \rightarrow [Ne]$

- Ionic sizes (ionic radii)
 - Part of the distance between the centers of two neighboring ions in an ionic solid (O²⁻ is used as a standard with radius 140 pm)
- Cations are smaller than their parent atoms
 - Cation size decreases as charge increases for the different cations of an element
- Anions are larger then their parent atoms
- Ionic sizes of cations as well as anions follow the same trends in the periodic table as the sizes of atoms (increase down and to the left)
 - In a given period, the anions are larger than the cations

• Isoelectronic species – atoms and ions with		
the same number of electrons (have the same		
electron configuration)		
 Size decreases with increasing the atomic number of the element (nuclear charge increases) 		
Example: Compare the sizes of Cl ⁻ , Ca ²⁺ and Sc ³⁺		
Isoelectronic, electron configuration of argon [Ar]		
$\Rightarrow Sc^{3+} < Ca^{2+} < Cl^{-} \text{ (atomic number }\downarrow\text{)}$		
Example: Compare the sizes of Ca , Ca^{2+} and Mg^{2+}		
Ca ²⁺ < Ca (cation is smaller)		
$Mg^{2+} < Ca^{2+}$ (Mg is above Ca) $\Rightarrow Mg^{2+} < Ca^{2+} < Ca$		