

## **Models of Chemical Bonding**

- Bonds are forces holding atoms or ions together
- Bonds form as a result of lowering of the total energy (energy of separated species is higher than that of bonded species)

# 9.1 Types of Bonding

- Bond formation is accompanied by rearrangement of valence electrons
- Complete transfer of electrons between metals (low *I*) and nonmetals (high *A*)
  - Formation of ions  $\rightarrow$  ionic bonding
  - Electrostatic attraction between oppositely charged ions

- Sharing of electrons between nonmetals (high *I*, high *A*)
  - Formation of molecules  $\rightarrow$  covalent bonding
  - Attraction between the nuclei and the shared electrons
  - The shared electrons are localized between the bonded atoms
- Sharing of electrons between metals (low *I*, low *A*)
  - Formation of metallic solids  $\rightarrow$  metallic bonding
  - Attraction between metal cations and a "sea" of shared electrons
  - The shared electrons are delocalized in the entire volume of the metal

## Lewis Symbols for Atoms and Ions

• Lewis symbol → chemical symbol + a dot for each valence electron

|        |   | 1A(1)           | 2A(2)           |    | 3A(13)                          | 4A(14) | 5A(15) | 6A(16) | 7A(17) | 8A(18)                          |
|--------|---|-----------------|-----------------|----|---------------------------------|--------|--------|--------|--------|---------------------------------|
|        |   | ns <sup>1</sup> | ns <sup>2</sup> |    | ns <sup>2</sup> np <sup>1</sup> | ns²np² | ns²np³ | ns²np4 | ns²np⁵ | ns <sup>2</sup> np <sup>6</sup> |
| reriod | 2 | • Li            | •Be•            |    | • B •                           | • • •  | • N •  | :0.    | : F :  | :Ne:                            |
|        | 3 | •Na             | •Mg•            |    | • AI •                          | • Si • | • P •  | : : •  | : CI : | : Ar :                          |
|        |   | Г               | . 1             | 41 |                                 | 1 4    | 1      | 41     |        | C                               |

- For metals, the # of dots equals the max. # of e<sup>-</sup>s lost in cation formation
- For nonmetals, the # of unpaired dots equals the # of e<sup>-</sup>s gained in anion formation or the # of covalent bonds the element forms

### 9.2 The Ionic Bonding Model

- The octet rule when atoms bond, they gain, lose, or share electrons in order to attain an octet (eight) or a duplet (two) configuration of a noble gas
  - Most *s* and *p*-block metals form cations by loosing all valence electrons (loosing all dots)
    - *s*-block metals achieve the electron configuration of the previous noble gas; *p*-block metals achieve a pseudo-noble gas electron configuration
  - Nonmetals form anions by gaining electrons until they reach the configuration of the next noble gas
- Lattice Energy (Lattice Enthalpy)
- Lattice enthalpy  $(\Delta H_L)$  the enthalpy change for the separation of 1 mol of an ionic compound into isolated gaseous ions

 $MX(s) \rightarrow M^+(g) + X^-(g) \qquad \Delta H_L > 0$ 

• At constant pressure the lattice enthalpy is numerically equal to the heat of formation of one mol of the ionic compound from gaseous ions

 $M^+(g) + X^-(g) \rightarrow MX(s)$   $q_p = -\Delta H_L < 0$ 

• The heat released in the formation comes from the potential energy drop due to the attraction between the oppositely charged ions

- Electrons lost by the metal are gained by the nonmetal
- Both positive and negative ions reach octet (or duplet) electron configurations

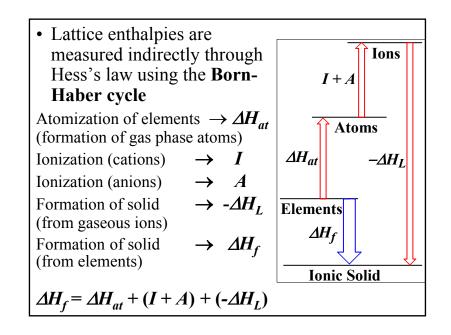
#### **Example:**

Predict the formula of magnesium chloride using Lewis structures.

Mg – group 2  $\rightarrow$  2 valence e<sup>-</sup>  $\rightarrow$  loss of 2 e<sup>-</sup>

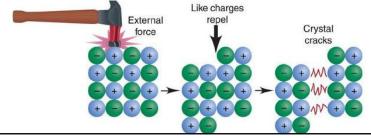
Cl – group  $17 \rightarrow 7$  valence  $e^- \rightarrow$  gain of 1  $e^-$ 

$$: \overset{.}{\text{Cl}} \stackrel{.}{ + \text{Mg}} \stackrel{.}{ + \text{Cl}} \overset{.}{\text{Cl}} : \longrightarrow 2[: \overset{.}{\text{Cl}} :]^{-} + \text{Mg}^{2+}$$
  
Formula: MgCl<sub>2</sub>


 $E_p \propto \frac{q_1 q_2}{r_{12}}$ 

- Potential energy of interaction between two ions with charges  $q_1$  and  $q_2$  separated by a distance  $r_{12}$
- ⇒ The lattice enthalpy increases with increasing the charge of the ions and decreasing the distance between them (decreasing the size of the ions)
  - The charge factor is more dominant
  - The size factor becomes important only when comparing ionic compounds with equivalent ionic charges




**Example:** Calculate the lattice enthalpy of KBr  $\Delta H_f = \Delta H_{at} + (I + A) + (-\Delta H_L)$   $\Delta H_L = \Delta H_{at} + I + A - \Delta H_f$   $\Delta H_L = \Delta H_f (K, g) + \Delta H_f (Br, g) + I(K) + A(Br)$   $-\Delta H_f (KBr, s)$ Data from Appendix B and Figures 8.12 & 8.14:  $\Delta H_L = (89) + (112) + (419) + (-325) - (-394) \text{ kJ/mol}$   $\Delta H_L = 689 \text{ kJ/mol}$ The Derm Haber evale shows that the energy

• The Born-Haber cycle shows that the energy required for atoms to lose or gain electrons is supplied by the lattice energy of ionic solids



#### The Properties of Ionic Compounds

- Ionic solids are crystalline solids (regular threedimensional arrays of stacked ions)
  - High melting and boiling points very strong attractions between the ions (hard to separate)
  - Hard, rigid and brittle
  - Do not conduct electricity in the solid state, but conduct electricity when melted or dissolved (electrolytes)

