9.3 The Covalent Bonding Model Formation of covalent bonds

• Covalent bond – a result of atoms sharing a pair of electrons

- The number of shared e⁻ pairs equals the number of electrons an atom needs in order to complete its octet (or duplet) structure
- Lewis structures diagrams showing the distribution of electrons in a molecule
 - Shared (bonding) e⁻ pairs between the atoms (can be expressed as lines representing bonds)
 - Lone e⁻ pairs not involved in bonding (not shared)

Example:

• Types of bonds

- Single bond a single bonding (shared) pair
- Multiple bonds double or triple bonds (2 or 3 bonding pairs)

 $(\mathbf{\ddot{O}})$ or $\mathbf{\ddot{O}}$ or $\mathbf{\ddot{O}}$

 $(N \otimes N)$ or $(N \equiv N)$

• **Bond order** – number of bonds linking two atoms $\ddot{Cl}(\ddot{Cl})$ or \ddot{Cl}

Single bond \rightarrow

Double bond \rightarrow

Triple bond \rightarrow

H-I

295 kJ/mol

Bond Energy (Enthalpy) and Bond Length

• Bond enthalpy (ΔH_{R}) – the enthalpy change for the dissociation of one mole bonds from molecules in the gas phase

 $A-B(g) \rightarrow A(g) + B(g)$ $\Delta H_{R} > 0$

• ΔH_{B} is a measure of the strength and stability of chemical bonds

Large $\Delta H_B \Leftrightarrow$ stronger bonds

- The strength of the bond between a given pair of atoms varies slightly in different molecules
- Average bond enthalpies (ΔH_R) averaged over many compounds

- Bond strength (ΔH_R) increases with increasing the bond order :N≡N: 945 kJ/mol :**O=O**: 498 kJ/mol :F-F: 159 kJ/mol • In general, bond strength (ΔH_B) increases with decreasing the size of the bonded atoms H₋F 565 kJ/mol H-Cl 427 kJ/mol H–Br 363 kJ/mol
- **Bond length** the distance between the nuclei of two bonded atoms - Bond lengths increase with decreasing the bond order :N≡N: 110 pm :Ö=Ö: 121 pm :F-F: 143 pm - Bond lengths increase with increasing the size of the bonded atoms Cl-Cl 199 pm Br–Br 228 pm I-I 266 pm - Average bond lengths - averaged over many comp.

•	In	general,	a	shorter	bond	is	a	stronger	bone	d
---	----	----------	---	---------	------	----	---	----------	------	---

able 9.4 Th	The Relation of Bond Order, Bond Length, and Bond Energy						
Bond	Bond Order	Average Bond Length (pm)	Average Bond Energy (kJ/mol)				
с—о	1	143	358				
C=0	2	123	745				
C≡O	3	113	1070				
C-C	1	154	347				
C = C	2	134	614				
$C \equiv C$	3	121	839				
N—N	1	146	160				
N=N	2	122	418				
$N \equiv N$	3	110	945				

• **Covalent radii** of atoms – contributions of individual atoms to the lengths of covalent bonds (average values are tabulated and depend on the bond order)

The Properties of Covalent Compounds

- Molecular compounds most covalent compounds consist of molecules (water, sugar, ...)
 - Low melting and boiling points the forces holding the molecules together are much weaker than the covalent bonds inside the molecules
 - Soft solids (often gases or liquids)
 - Poor electrical conductors in the solid state as well as when melted or dissolved (non-electrolytes)
- **Covalent network solids** three-dimensional arrays of covalently bonded atoms (diamond, quartz, ...)
 - Very high melting and boiling points- very strong covalent bonds hold the atoms together
 - Extremely hard
 - Poor electrical conductors

Example:

Rank the following bonds by their strengths and lengths: C−C, C=N, C=N, C−S

Bond strength: $C \equiv N > C = N > C - C > C - S$

Bond order

Atomic size

Bond length: C-S > C-C > C=N > C=N